REPUBLIQUE ALGERIENNE DEMOGRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE CENTRE UNIVERSITAIRE « SALHI AHMED » DE NAAMA

INSTITUT DES SCIENCES ET TECHNOLOGIE

DEPARTEMENT DES SCIENCES ET TECHNOLOGIE

MEMOIRE DE MASTER

Spécialité : Génie Mécanique

Option : Energétique

Intitulé de Mémoire

Effet des paramétres opératoires sur l'éfficacité énergétique des systèmes (PX) en osmose inverse (station de MEKTAA)

Présenté par :

- Bendebiche Abdelghani
- Rahmani Ahmed

Soutenu publiquement le: 06.06.2018, devant le jury :

M. Khatir Toufik	MCA	CU Naama	Président
M. Chabane Mustapha	MCB	CU Naama	Encadreur
Mme. Boukhadia Karima	MCB	CU Naama	Examinateur

2017/2018

Remerciement

Nous tenons à exprimer toute notre gratitude a notre directeur de mémoire Dr.Chabane mustapha enseignant à l'institut des science et de technologie du centre universitaire Salhi Ahmed, pour nous avoir proposé ce thème de recherche et de nous avoir guidé et conseillé tout au long de la réalisation de ce mémoire, et pour son soutient permanant.

Nous tenons à remercier sincèrement tous les membres du jury pour l'attention qu'ils ont témoigné à notre travail et pour avoir accepté de participer a notre soutenance de thèse.

A tous nos enseignants du département de génie mécanique de centre universitaire Salhi Ahmed.

A toute l'équipe de station de dessalement de Mektaa qui nous a permis d'identifier l'usine et nous a aidé avec des informations.

Enfin, nous adressons notre plus sincère remerciement à nos familles et tous nos proches et amis, qui nous ont accompagnés, aidé, soutenu et encouragé tout au long de la réalisation de ce mémoire.

Dédicace

Nous dédions Ce travail à nos parents, nos amis, nos familles et à tous nos proches, camarades Nous dédions également ce travail à la mémoire de notre très cher ami TIDJINI **TAYEB** décidé que dieu ait son âme.

Sommaire

Titre	pages
Liste des figures	6
Liste des tableaux	7
Liste des abréviations	8
Résumé	9
Introduction générale	10
Chapitre I : Synthèse bibliographique	14
I.1.Introduction	15
I.2. Osmose inverse	17
I.3. Éléments constitutifs d'une unité d'osmose inverse	18
I.4. Paramètres de fonctionnement	20
I.5 Notions théoriques sur la consommation énergétique en osmose inverse	21
Chapitre II Efficacité énergétique des systèmes ERI	24
II.1.Le principe de base de fonctionnement du système ERI	25
II.2.Les différents systèmes de récupération d'énergie ERI	25
II.3.1.Les paramètres de fonctionnement d'un système PX	27

Chapitre III: Présentation de la station de dessalement de Mektaa	30
III.1.Principe de fonctionnement de la station de Mektaa	31
III.2. Présentation des systèmes turbo chargeur	32
III.3.Rendement énergétique des systèmes turbochargeurs	37
Chapitre IV: Simulation par logiciel de dimensionnement toray hydranautics	39
IV.1.Introduction	40
IV.2.Principe de fonctionnement des logiciels	42
IV.3.Calcul de la Consommation énergétique	44
IV.4.Détermination de l'éfficacité énergétique	46
Chapitre V : Résultats et discussions	59
V.1.Résultats obtenus	60
V.2.Discussion des résultats	68
V. Conclusion et perspectives	69

Liste des figures

N° de figure	Nom de figure	Page de figure
1	Energie consommée en dessalement des eaux	11
2	Distribution du coût d'investissement dans une station de dessalement par osmose inverse	12
3	Répartition de la consommation énergétique dans une station de déminéralisation des eaux	16
4	Débits de production en eau déminéralisée par les stations de dessalement en Algérie	17
5	Principe de l'osmose et de l'osmose inverse	18
6	Éléments constitutifs d'une unité d'osmose inverse	19
7	Schéma d'un système d'osmose inverse simplifiée	24
8	Schéma simplifié d'un système de récupération	26
9	Principe de récupération d'énergie par turbine	27
10	Principe de fonctionnement de la turbine pelton	27
11	Turbine Francis	28
12	Turbochargeur	29
13	Echangeur de pression	29
14	Echangeur de pression dans une installation de système membranaire	30
15	Les différents compartiments d'osmose inverse dans la station de dessalement de Mektaa	36
16	schéma de la station de dessalement de Mektaa, de l'étape de captage jusqu'à la distribution a ADE	37
17	Logiciel SCADA de fonctionnement de la station de dessalement de Mektaa	37
18	Réseau d'alimentation en électricité de la station de dessalement de Mektaa	39

19	Dimensionnement des éléments dans un tube de pression	41
20	image capture écran de l'étape analyse par IMS -Design	44
21	image capture écran de l'étape de dimensionnement avant le calcul	45
22	image capture écran de l'étape de dimensionnement après le calcul	46
23	image capture écran de l'étape calcul	47
24	image capture écran de l'étape calcul TORAY (A ; B ; C ; D ; E ; F ; G)	52
25	Energie consommée en fonction du pH sans système ERI	61
26	Energie consommée en fonction de la température sans système ERI	62
27	Energie consommée en fonction du pH avec système ERI	63
28	Energie consommée en fonction de la température avec système ERI	64
29	Energie consommé en fonction de la pression de recirculation du concentrât avec système ERI	65
30	Energie consommé en fonction de la pression de recirculation du concentrât avec système ERI (IMS)	66
31	Comparaison entre les résultats de simulation par TORAY pour différents type de membranes et les données réelles de la station de Mektaa (Q _{Perméat} =500000 m ³ /jour, taux conversion=44.86%)	67
32	Comparaison entre les résultats de simulation par IMS pour différents type de membranes et les données réelles de la station de Mektaa (Q _{Perméat} =500000 m ³ /jour, taux conversion=44.86%).	68

Liste des tableaux

Tableau 1 : Energie consommé en dessalement des eauxTableau2: Energie consommé avant et après installation des systèmes de récupération d'énergie dans quelque stations en Algérie

Tableau3 : Composition chimique standard d'une eau de mer

Liste des abréviations

i : nombre d'ions dissociés dans le cas d'un électrolyte,

C : concentration en sels en mol.m⁻³

R : constante des gaz parfaits R = 8,314 J.mol-1.K-1

T : température absolue de la solution en°C.

 η :est le rendement

EC :Consommation spécifique en énergie (KWh/m³)

W_{pompe}:Puissance de la pompe (KWh)

Q :Débit d'alimentation (m^3/h)

 $\Delta \mathbf{P}$:Perte de charge (Bar)

J :Flux (L/m²hbar)

 $\Delta \pi$:Différence de pression osmotique (Bar)

ERI : Système de conversion d'énergie

SER : Système d'énergie renouvelable .

PX : Echangeur de pression

UF : ultrafiltration

CIP :clean in place

RO : osmose inverse

MED : le procédé à multi effet (multi effect distillation)

MSF : procédé de vaporation à instantané (multi stage flash)

MVC : compresseur mécanique (mechanical vapor compression)

TVC: thermocompressure (thermal vapor compression)

SWRO: eau de mer osmose inverse (seawater reverse osmosis)

BWRO : osmose inverse d'eau saumâtre (brackish water reverse osmosis)

Résumé

La déminéralisation des eaux naturelles représente un intérêt majeur et cela pour satisfaire les fortes consommation en eaux dans différentes activités tel que l'industrie chimique ,la potabilisation des eaux ,l'industrie pharmaceutique ,l'industrie agroalimentaire et les différentes activités lié à la vie quotidienne des citoyens tel que l'irrigation .

l'osmose inverse est une technologie très utilisés dans le domaine de dessalement des eaux cependant il est a souligné que le rapport qualité d'eau produite par rapport à la consommation énergétique fourni reste un vrai challenge pour plusieurs pays dans le monde Depuis 1999, l'Algérie s'est lancé dans un vaste programme de réalisation de plusieurs stations de dessalement utilisant l'osmose inverse avec une capacité de production totale de **2.406.880 m³/jour** et une consommation énergétique moyenne de **4 kWh/m³** pour chaque station ce représente une facture énergétique très élevé de l'ordre de **9627520 KWh/jour**.

Afin de réduire cette consommation énergétique certaines stations ont procédé à la mise en place des systèmes de récupération et de conversion d'énergie connu sous le nom d'échangeurs de pression **PX**.

I Introduction générale

Pour faire face à la pénurie d'eau et aux forte consommation en eau dans le monde et plus particulièrement en Algérie ,la production d'une eau déminéralisé de qualité acceptable avec un coût minimal est devenu un vrai chalenge pour les futurs générations

Dans notre pays . Le recours aux techniques membranaires tel que l'osmose inverse est de plus en plus important pour résoudre le problème d'approvisionnement en eau destinée à la consommation dans différentes activités .

Les procédés de dessalement de l'eau peuvent être classés en deux grandes familles: les procédés thermiques faisons intervenir un changement de phase et les procédés membranaires tel que l'osmose inverse .

Cependant, L'osmose inverse devient le procédé le plus courant et le plus rentable et le moins énergivore par rapport au procédé de distillation, mais avec l'augmentation des nombres de stations utilisant la technique d'osmose inverse ,il a était constaté que une consommation énergétique importante et un cout d'investissement assez élevé (voir Tableau1).

Fig.1 :Energie consommé en dessalement des eaux [1]

Procédé	Energie électrique KWh/m ³	Qualité de L'eau Mg/l	Investissement Dessalement US\$/(m ³ /i)	Prix de l'eau US\$/m ³
MSE	255	10	1200.2500	062
MSF	2.3-3	10	1200-2300	0.0-2
MED	2-2.5	10	900-2000	0.5-1.5
MVC	7-12	10	1100-3500	2-2.6
MED-TVC	1-2	10	1000-2000	0.5-1
SWRO	4-6	400-500	900-2500	0.5-2
SWBO	1.5-2.5	200-500	300-1200	0.3-1.5

 Tableau1 :Energie consommé en dessalement des eaux [2]

A titre d'exemple ,notre pays possède 13 stations de dessalement utilisant l'osmose inverse avec une consommation énergétique totale de 9627520 KWh/jour.

Les études ont montrés que le cout d'investissement énergétique d'une station de dessalement par osmose inverse représente 53% cout d'investissement globale (Voir figure2).

Celle énergie électrique consommée est du principalement aux pompes haute pression (HP). En amont des systèmes membranaires

Suite à ce diagnostique ,les experts en dessalement des eaux par osmose inverse ont mis des systèmes de récupération d'énergie pour minimiser l'énergie consommé ,c'est le cas de certaines stations dans notre pays (Tableau2)

Stations de	e dessalements	Sans récupération D'énergie (SRE)	Avec récupération D'énergie
Station de Frouka	Valeur théorique (KWH/m ³)	4.9	2.3
Station de Flouka	Valeur d'exécution(KWH/m ³)	4.7	2.23
Station de skikda	Valeur théorique (KWH/m ³)	4.87	2.34
	Valeur d'exécution(KWH/m ³)	4.56	2.17
Stationde béni saf	Valeur théorique (KWH/m ³)	5.08	2.53
	Valeur d'exécution(KWH/m ³)	4.77	2.27
Station de magtaa	Valeur théorique (KWH/m ³)	6.33	4.5
	Valeur d'exécution(KWH/m ³)	6.33	4.077

Tableau2 :Energie consommé avant et après installation des systèmes de récupérationd'énergie dans quelque stations en Algérie [4]

Dans la plupart des stations de dessalement ,Il a était constaté que le rendement des systèmes de conversion d'énergie PX est inférieur par rapport aux normes exigés ce qui représente une perte énergétique et plusieurs questions reste posé sur les effets contournants qui réduit la conversion d'énergie .

Dans cette perspective ,nous allons étudier l'influence des paramètres opératoires sur l'efficacité des systèmes de conversion PX en se basant sur un développement mathématique du rendement énergétique du système PX en se basant sur les différentes recherches qui sera suivi et validé par deux méthodes ;

Etude du fonctionnement d'un cas pratique de la station de dessalement d'eau de mer de la région de MEKTAA (W.Oran)

Utilisation des résultats de simulation des données par le logiciel IMS design

Ce mémoire est réparti en Cinq chapitres :

Chapitre I. Synthèse bibliographique

Chapitre II : Les systèmes de récupération d'énergie ERI

Chapitre III : Présentation de la station de dessalement de MEKTAA Chapitre IV :Modes de fonctionnement des logiciels IMS et TORAY Chapitre V :Résulats et discussions Conclusion et perspectives

Chapitre I :

Synthèse bibliographique

I.1.Introduction

L'énergie consommée est très importante dans la déminéralisation des eaux par le procédé d'osmose inverse.

L'énergie nécessaire pour produire une eau déminéralisé dans une station se décompose selon

Fig3 : Répartition de la consommation énergétique dans une station de déminéralisation des eaux

La consommation énergétique dans la déminéralisation des eaux de mers représente 50 à 80 % par rapport à la consommation globale du procédé de dessalement utilisant la technique d'osmose inverse.

Avec l'augmentation des nombres de stations utilisant l'osmose inverse dans le monde, et en particulier dans les pays en voie de développement, le coût énergétique devient très élevés. L'Algérie est considéré comme l'un des pays qui a investit dans le dessalement des eaux de mers depuis 1999, Actuellement il existe 13 stations de dessalement par le procédé d'osmose inverse installé au niveau du littoral avec une capacité de production 2.406.880 m³/jour.

Les Stations de dessalement en Algérie

Fig 4 : Débits de production en eau déminéralisée par les stations de dessalement en Algérie[5]

Devant cette énorme capacité de production en eau douce par le procédé d'osmose inverse dans notre pays, la consommation énergétique ne cesse d'augmenter ce qui influe sur le prix de revient en eau

Actuellement les systèmes de récupération d'énergies sont très utilisés dans diverses stations de dessalement des eaux de mers par la technologie d'osmose inverse

Dans ce contexte, il serait indispensable de mieux maitriser la consommation énergétique en osmose inverse par une bonne gouvernance des différents paramètres en relation avec le système d'osmose inverse qui représente 50 à 80 % de la consommation énergétique globale de la station.

Mais tous d'abord, il serait utile de faire une description du procédé d'osmose inverse et les concepts théoriques sur la consommation énergétique en osmose inverse.

I.2.1.1.Osmose inverse

L'osmose inverse est une technique de séparation de l'eau et des sels dissous au moyen de membranes semi-perméables sous l'action de haute pression. [6], Ce procédé n'implique pas de changement de phase. Les membranes polymères utilisées laissent passer les molécules d'eau et ne laissent pas passer les particules, les sels dissous, les molécules organiques de 10⁷ mm de taille.

I.2.2.2.Principe de l'osmose inverse

Le principe de base de l'osmose a été découvert par le savant francais Jean Abet ;nollet en 1798 .il consiste a un transfert de solvant (eau dans la plupart des cas) à travers une membrane semi-perméable sous l'effet d'un gradient de concentration. Soit un système à deux compartiments séparés par une membrane semi-perméable et contenant deux solutions de concentrations différentes (figure). [7]

Fig5 : Principe de l'osmose et de l'osmose inverse [8]

Avec l'augmentation de la pression au delà de la pression osmotique va se traduire par un flux d'eau dirigé en sens inverse du flux osmotique (voir fig), c'est-à-dire de la solution concentrée vers la solution diluée : c'est le phénomène d'osmose inverse.

Pour les solutions suffisamment diluées, la pression os motique notée π peut être calculée d'après la loi de van't Hoff :

$$\pi = i.C.R.T$$

(Eqaution I.1)

i : est le nombre d'ions dissociés dans le cas d'un électrolyte,

C : est la concentration en sels en mol.m⁻³

R : est la constante des gaz parfaits R = 8,314 J.mol-1.K-1

T : est la température absolue de la solution en Kelvin.

Le débit spécifique J_A (débit massique par m² de membrane) d'eau osmose produite est proportionnel à la différence entre la pression appliquée P et la pression osmotique π de la solution concentrée.

 $J_A = A (\Delta P - \Delta \pi)$ (Equation I.2)

A : est le coefficient de perméabilité vis-à-vis de l'eau pure.

Le flux spécifique de sel traversant la membrane est quant à lui proportionnel à la différence de concentration de part et d'autre de la membrane.

$$J_s = B \Delta C$$
 (Equation I.3)

B : est le coefficient de perméabilité vis-à-vis du sel.

I.3. Éléments constitutifs d'une unité d'osmose inverse

Les éléments constitutifs d'une unité d'osmose inverse sont schématisés sur la figure5.

Fig6 : Éléments constitutifs d'une unité d'osmose inverse [9]

Les principaux constituants d'un système de l'osmose inverse sont les suivants

les membranes proprement dite

- \succ les modules
- la pompe HP
- un système de prétraitement
- un système de post-traitement.

Le dessalement par osmose inverse nécessite d'abord un prétraitement très poussé de l'eau de mer pour éviter le dépôt de matières en suspension sur les membranes qui conduirait très rapidement à une diminution des débits produits. Il est nécessaire de retenir toutes les particules de dimension supérieure à 10 à 50 µm selon le type de module d'osmose inverse. Ceci est réalisé à l'aide d'une préfiltration grossière puis d'une filtration sur sable pour éliminer les matières en suspension les plus grosses. Puis un traitement biocide et une acidification sont nécessaires pour éviter le développement de microorganismes sur la membrane et éviter la précipitation de carbonates. Enfin une filtration sur cartouches permet de retenir les particules de taille de l'ordre de quelques dizaines de µm qui n'ont pas été retenues par le filtre à sable.

La pompe haute pression permet ensuite d'injecter l'eau de mer dans le module d'osmose inverse dans lequel se trouvent les membranes.

De plus, un deuxième phénomène intervient lors de l'osmose inverse, il s'agit de la polarisation de concentration de la membrane. En effet, au cours du temps, la concentration de la solution salée augmente puisque la majorité des molécules sont retenues d'un seul côté de la membrane. De ce fait, la pression osmotique augmente également près de la couche limite, avec des risques de précipitation des composés à faible produit de solubilité. Pour un même rendement, la pression à appliquer est donc plus élevée. Pour éviter ce phénomène on balaye la membrane du côté de la solution salée par un flux d'eau continu. Toute l'eau n'est pas filtrée, une partie sert à nettoyer la membrane. Ce procédé est donc semblable à une filtration tangentielle. L'eau non filtrée est appelée retentât tandis que l'eau qui a traversé la membrane est appelée perméat.

Afin de limiter la consommation d'énergie du procédé, on peut placer sur le circuit du rétentat une turbine qui permet de récupérer une partie de l'énergie contenue dans ce fluide sous haute pression. [10]

Une usine de dessalement par osmose inverse comprend essentiellement

- Un système d'alimentation en eau de mer ;
- Un ensemble de prétraitement physicochimique de l'eau de mer ;
- Un dispositif de mise en pression de l'eau prétraitée.
- Un osmoseur proprement.

- Un système de récupération de l'énergie du concentrât.
- Un ensemble de post-traitements du perméat.
- Un poste de nettoyage chimique des membranes.

I.4.1.Paramètres de fonctionnement

L'analyse théorique des caractéristiques des membranes testées, est réalisée selon les méthodes standards du transfert membranaire préalablement décrites [17-18-19].Le taux de rejet des ions est déterminé par le rapport de la concentration du perméat C_p sur celle initiale C_0 , exprimé par la relation

$$R = \left(\frac{C_0 - C_p}{C_0}\right) x 100 \tag{EqI.4}$$

Taux de conversion (%Y), est représenté par la formule (I.5). C'est le quotient du débit d'eau produit par le débit d'eau d'alimentation :

$$Y(\%) = \frac{Q_p}{Q_0} \times 100$$

(Eq I.5)

Flux du perméat J_p , est, l'expression du débit du perméat $Q_{perméat}$ par rapport à la surface active de la membrane :

L'énergie de consommation est proportionnelle à la pression, elle est donnée par la relation:

$$E = \frac{\Delta P \times 100}{\eta x Y \times 36}$$

(EqI.6)

Avec E en kWh/m^3

 ΔP : Pression transmembranaire en bar,

 ηx : Efficacité globale de la pompe est égale à 80%,

Y : Taux de conversion. [11]

I.4.2.Utilisation de l'eau produite par les systèmes membranaires

Une eau déminéralisée filtrés par le procédé d'osmose inverse pourra servir selon les valeurs de TDS et pH pour les usages dans la vie quotidienne des citoyens, c'est a dire eau potable ou d'irrigation, mais aussi une eau déminéralisé qui pourra alimenter les systèmes chaudière dont la valeur du TDS ne doit pas dépasser 200 mg/l (RODIER et al.) 2005).

Dans ce qui suit nous allons faire une bref présentation sur les différents types d'eau en l'occurrence les eaux salines, les eaux douces et les eaux déminéralisé et leurs propriétés physico chimiques

I.5.Salinité des eaux

La salinité désigne la quantité de sels dissous dans un liquide, notamment l'eau qui est un puissant solvant pour de nombreux minéraux. Il ne faut pas confondre la salinité avec la dureté de l'eau qui est relative à son dosage en calcium et magnésium.

I.5.1. Propriétés chimiques

Le sel dissous modifie les propriétés de l'eau, en premier lieu sa capacité de dissolution, sa densité, mais aussi sa compressibilité, son point de congélation et d'ébullition, sa conductivité électrique, sa dureté ainsi que sa viscosité ou sa corrosivité, et très légèrement sa capacité à transporter les sons et la lumière. La quantité de sels dissous dans un liquide modifie la pression osmotique de celui-ci.

I.5.2.Concentration massique

À une température donnée, la salinité ne peut dépasser un seuil de concentration massique, au-delà duquel le liquide ne peut plus dissoudre du sel et des cristaux se forment, au fond du récipient ou en périphérie de la surface

Le seuil de concentration massique augmente avec la température, ce qui fait que l'eau très chaude peut contenir beaucoup plus de sel dissous que l'eau froide. Il augmente aussi avec la pression. La salinité approche par exemple 300 g/litre dans le forage pétrolier-gazier profond d'Elgin-Franklin en mer du Nord, ce qui pose des problèmes de formation rapide de tartre dans les installations. [12]

I.5.3.Salinité des eaux de mers

L'eau de mer est une solution qui contient en moyenne 35 g/kg de sels divers (chlorure de sodium essentiellement), avec un pH très stable de 8,2 (légèrement alcalin), mais qui tend à s'acidifier en dissolvant le CO₂ d'origine anthropique en excès dans l'air. La Mer Morte contient beaucoup plus de sels, ce qui explique qu'on y flotte sans effort, alors que la Mer Baltique en contient beaucoup moins, ce qui explique qu'elle gèle plus vite. Néanmoins, hormis dans les mers fermées, on a montré au début du XXe siècle que la proportion des composants les plus importants reste quasi constante, ce qui laisse penser que depuis des millions d'années et plus sans doute, les océans ont été parfaitement mélangés par la circulation thermo haline, avec l'aide de certaines espèces de plancton qui par leurs mouvements quotidiens et saisonniers contribuent à homogénéiser les couches thermiques et salines.Ceci indiquait, qu'en plus des circulations particulières à chaque océan, l'eau circulait

entre les différents océans, ce qui a été confirmé par la courantologie.

Ion	Concentration(mg/L)
Calcium	410
Magnesium	1310
Sodium	17602,76
Potassium	390
Barium	0,05
Strontium	13
Fer	<0.02
Manganese	<0.01
Silice	0,04-8
Chloride	29923
Sulfate	2740
fluorure	1,4
Bromure	65
Nitrate	0.5
Bicarbonate	152
Bore	4 - 5
Autre	
TDS	35,000
pH	8.1

Tableau 3 : Composition chimique standard d'une eau de mer

I.5.4.Les eaux potables

Une eau liquide est dite potable lorsqu'elle présente certaines caractéristiques concentration en chlorures, pH, température... la rendant propre à la consommation humaine. Les standards de référence dans ce domaine diffèrent selon les époques, les pays et, dans certains pays, selon l'autorité responsable de la définition1. Le concept de « potabilité » varie à travers le monde, fruit d'un contexte historique, scientifique et culturel local. Il détermine la question de l'accès à l'eau, puisqu'une eau de bonne qualité est essentielle au développement économique et humain.

Par exemple, les paramètres fréquemment réglementés sont :

- la qualité organoleptique (couleur, turbidité, odeur, saveur) ;
- certains paramètres physico-chimiques naturels (température, pH, chlorures : 200 mg/l, sulfates : 250 mg/l, etc.);
- la présence de substances dites indésirables (nitrates : 50 mg/l, nitrites, pesticides, etc.)

- la présence de substances toxiques (arsenic, cadmium, plomb, hydrocarbures, etc.);
- certains paramètres microbiologiques ; l'eau ne doit pas contenir d'organismes pathogènes, notamment de coliformes fécaux).

Ces paramètres peuvent être assurés par un traitement spécifique de l'eau ; dans certains cas il pourra s'agir d'un simple stockage en milieu hermétique (Citerne souple) ou autre, permettant la stabilisation biologique [13]

I.6. Consommation énergétique en osmose inverse

Divers approches mathématiques ont était élaboré pour calculer la consommation énergétique dans un système d'osmose inverse.

Le modèle le plus simple est basé sur un système d'osmose inverse standard comme c'est montré dans la figure suivante

Fig7.: Schéma d'un système d'osmose inverse simplifiée

L'énergie consommée est déterminée par le rapport entre la puissance de la pompe sur le débit du perméat : [14]

$$EC = \frac{W_{pomps}}{Q_{perméat}}$$

$$W_{pomps} = Q_f \Delta P$$

$$\Delta P = P_0 - P_f$$
(EqI.9)

Chapitre II L'efficacité énergétique des systèmes ERI

II.1.Principe de base de fonctionnement d'un système ERI

Lors de l'opération de déminéralisation des eaux par osmose inverse en amont du système membranaire, il existe une opération préliminaire appelé prétraitement ou il ya refoulement de l'eau vers les membranes d'osmose inverse sous pression à travers des pompes à haute pression, ce qui représente une consommation d'énergie de tous les équipements de la station Et par conséquent L'eau d'alimentation ou prétraité sera divisé au niveau de la membrane en deux parties avec une différence de concentration. [15]

Le principe de base des systèmes de récupération d'énergie ERI est fondé sur la réutilisation de l'énergie dissipé du concentrât par un recyclage de cet énergie à l'eau d'alimentation en amont du système membranaire comme c'est décrit dans le schéma suivant :

Fig8: Schéma simplifié d'un système de récupération

Le système de récupération d'énergie est alimenté par une partie du concentrât, où il transmet directement son énergie à une partie de l'eau d'alimentation.

II.2.Les différents systèmes de récupération d'énergie ERI

Il existe plusieurs types de systèmes de récupération d'énergie avec des mécanismes de fonctionnement différents ,ces systèmes sont répartis comme suit :

II.2.1Les systémes de récupération d'énergie par turbines

Dans ce genre de systèmes l'énergie hydraulique est converti en énergie mécanique suite à un écoulement du concentrat sur la turbine et par conséquent une rotation d'un rotor qui permet de produitre une énergie cinétique nécessaire pour alimenter la pompe (Voir Figure).

Fig9 : Principe de récupération d'énergie par turbine

A l'échelle industrielle, la premiére génération de ces systèmes de récupération d'énergie à base de turbines sont les turbine pelton inventé en 1850 [16]

Ce type de turbines est très utilisé dans les stations de dessalement des eaux , la turbine pelton est composé d'une roue qui tourne suite au passage du concentrât (Voir Figure)

Fig10 :Principe de fonctionnement de la turbine pelton [17]

La deuxiéme génération de turbines sont les turbines de Françis (Voir Figure11)

Ce système sont couplé à un générateur et moteur électrique avec certains inconvénients du point de vue efficacité énergétique ,cela est du à des limitations dans la gamme de pression et débit du concentrat recu par ces systèmes ,mais aussi à l'effet de colmatage des membranes sur les turbines Francis [18]

Fig11 : Turbine Francis

Cependant, il a été constater que ce genre de turbines représente certaines inconvénients du point de vue éfficacité énergétique ,cela est du à la gamme de débits et de pressions limités ,mais aussi à l'effet du colmatage membranaire sur l'efficacité de ce genre de turbine

II.2.2.Les systèmes de récupération d'énergie par échange de pression

Le principe de base de ces systèmes est basé sur une recirculation du concentrât et de l'alimentation à contre courant

Les premières modéles qui utilise ce genre de mécanisme sont les turbochargeur (inventé en 1990).

Les turbochageurs fonctionne par principe de centrifugation et cela suite à un recyclage d'une part du concentrât et un passage de l'eau d'alimentation dans un sens inverse ce qui permettra de générer une pression nécessaire pour alimenter la pompe en amont du système membranaire. [19]

Fig12:Turbochargeur

La deuxième génération sont les systèmes à base d'échange de pression qui sont basé sur une rotation d'un rotor suite à un écoulement à contre courant de deux fluides dans canal cylindrique dans lequel la saumure sous pression chasse l'eau de mer vers l'osmoseur alternativement avec l'eau de mer qui chasse la saumure vers le rejet. A cause de l'absence de piston, les fluides se mélangent partiellement mais seulement de quelques pour cent. [20]

Fig13: Echangeur de pression

Fig14: Echangeur de pression dans une installation de système membranaire Dans ce type de système, la puissance consommé est calculé par la formule suivante :

 $W_{pompe} = \Delta P(Q_f - \eta Q_b)$

Avec

W pompe: Puissance de la pompe (KWh)

 ΔP :Perte de charge (bar)

 Q_f :Débit d'alimentation (m³/h)

Q_b:Débit du concentrat (m³/h)

 η : rendement de la pompe

Cette équation montre le lien qui existe entre les parmétres opératoires du fonctionnement du système membranaire d'osmose inverse avec la puissance de la pompe ,ce qui prouve la relation avec la quantité et la qualité d'eau en amont et en aval du bloc de séparation par

```
membranes<sup>[21]</sup>
```

Avec l'utilisation des systèmes de conversion d'énergie dans les stations de dessalement ,il serait important de faire des études sur des cas pratique de station utilisant ce genre de technologie .

Dans ce cadre, nous allons entamer notre projet par une présentation d'un cas pratique de la sation de dessalement des eaux de mers de la région de Mektaa(W.Mostaganem)

Chapitre III

Présentation de la station de dessalement de MEKTAA

III.1.Présentation de la station :

L'Usine de Dessalement de Maktaa, sise à Plage de marssa elhadjaj (oran), a une capacité de production d'eau potable de 500.000 m³/jour,elle est composée de 4 Unités de dessalement de capacité Unitaire 125 000 m³/J. Les huit Unités de dessalement sont réparties sur deux lignes et ce comme suit :

- ➢ Ligne N°1 : Unité 1, Unité 2.
- Ligne N°2 : Unité 3, Unité 4.

Il sera associé à chacune des Unités ses équipements et ce, de la phase de prétraitement jusqu'à la phase de post-traitement. Pour chacune des Unités il sera associé les équipements suivants :

- Une pompe d'eau de mer
- 3 tour de et 3 canalisations de prise d'eau de mer en béton armé
- 4 ensembles de dégrillage/tamisage chaque ensemble correspondant à un tamiseur et dégrilleur fin pouvant assurer 33.33% de la capacité
- ➤ 4 pompes verticales à turbine en service et une (1) en stand by
- 10 unités d'UF chaque unité comprend 9 trains (une en stand by) chaque train d'UF contient 160 membranes
- 2 réservoir d'eau filtrée un pour chaque ligne
- 8 pompes d'eau filtrées en service et deux en stand by pour chaque ligne il y a aura
 4+1 en stand by +1 de réserve stockée.
- 10 pompes de rétro lavage en service 2 en stand by et 2 de réserve stockée dans le magazine de stockage
- ➤ 4 pompes en service et 4 en stand by , pour le nettoyage d'UF
- D'un système d'osmose inverse composé de :
 - > 24 trains en services et 1 en stand by
 - > 12 trains sont consacrés pour chaque ligne + 1 train en commun
 - ➢ 24 pompes HP
 - ➤ 24 ERI (turbocharger)
 - Chaque train équipé de 215+1 en stand by tubes à pression et 25 étages et 37800 membranes RO
 - 4 réservoirs d'eau traitée

- Station de pompages eau traitée
- Système de rejet

III.2.Système de prétraitement

L'étape de prétraitement a pour objectif de traité l'eau de mer afin de réduire au maximum l'encrassant des membranes RO, par conséquence le processus de nettoyage chimique des membranes (CIP) sera la moins fréquent possible. La qualité d'eau de mer mobiliser à travers le système de prise sera caractérisé par une faible turbidité toutes fois la possibilité d'encrassement des membranes RO reste élevé, ainsi le prétraitement est nécessaire pour abaisser le potentiel d'encrassement colloïdal à un niveau acceptable.

L'eau de mer contient également beaucoup de micro-organismes qui doivent être stoppés avant leur entrée dans les installateurs de traitement.

Pour atteindre les objectifs ci-dessus le processus de prétraitement de l'usine inclut :

- Les dégrilleurs auto nettoyants
- Les tamis fins rotatifs
- Les pompes d'eau de mer
- Le système d'UF par membrane
- Les réservoirs d'eau filtrée
- Les pompes de rétro-lavage d'UF
- Le système de nettoyage chimique
- Le dosage de l'Hypochlorite de sodium

2.1. Dégrilleurs/tamiseurs :

- Espacement de 20 millimètre pour stopper les organismes de grand de tailles
- Tamiseurs fins de 200microns pour les organismes de petit de tailles

2.2. Pompes d'eau de mer :

• Ces pompes fournissent le débit et la pression d'alimentation nécessaire pour les trains d'UF

2.3. Système d'ultra filtration (UF)

• Le système UF est prévu pour filtrer l'eau de mer après les différent tamis. l'UF enlèvera les particules colloïdales restantes en solution et produira une eau filtrée de bade turbidité aine que de faible SDI

2.4. Réservoir d'eau filtrée

2.5. Système de nettoyage d'UF (CIP : cleaning in place)

• Un système CIP est prévu pour l'installation d'UF.

• Ceci peut etre employé pour entreprendre l'entretien ou le nettoyage des membranes d'UF de maintenir les performances de l'usine.

2.6. Dosage de choc de l'Hypochlorite de sodium

III.3. Système de pompage de haute pression :

Chaque train RO est équipé d'une pompe d'alimentation dite pompe de haute pression en conséquence 25 pompes sont prévus dans la conception de l'usine de mektaa. Ces pompes sont de type centrifuge à un seul étage, fabrique en acier inoxydable super-duplex et fonctionnant à une vitesse fixe. Quand un train RO est mis en service la pompe démarrera selon les exigences du début de procédure et pressurisera comme requis par la procédure d'arrêt

Le système de pompage haute pression est composé de:

- 24 pompes de haute pression (une en stand by) ;(6 par Unité de dessalement), permettant de refouler environ la moitié du débit d'eau de mer microfiltrée nécessaire pour l'alimentation des châssis d'osmose inverse. L'autre moitié de ce débit est véhiculée à travers des systèmes de récupération d'énergie (Turbocharger ERI) puis les pompes booster avant qu'elle n'atteigne les châssis d'osmose inverse.
- L'eau en provenance des pompes d'eau filtrée est pressurisée grâce aux pompes de haute pression en première étape puis grâce au ERI à base de turbochager en deuxième étape avant que l'eau soit envoyée vers les trains d'osmose inverse

II.4. Système d'osmose inverse

Le système d'osmose inverse est divisé en deux lignes:

Chaque ligne est composée de quatre (4) Unités de Dessalement avec une capacité de production de 125.000 m^3 /jour.

- > Ces Unités sont à leur tour, composées par :
- > 215 tubes de pression chargés (1 en stand by) avec 7 membranes chacun.
- Un groupe de 24 Turbocharger (ERI)
- ➤ Type de membranes TORAY TM820R440
- Les pompes d'eau filtrée.
- Les réservoirs de rinçage.
- Le système de nettoyage chimique RO.
- > Le système de dosage de l'hydroxyde de sodium.
- Le système de dosage de l'antitartre.
- Pompes haute pression

4.1. Système de récupération d'énergie (ERI) :

Basé sur l'utilisation d'un système de turbochargeurs hydraulique dans lesquels l'énergie du rejet est utilisée pour augmenter la pression d'alimentation des trains RO au niveau requis.

4.2. Réservoir de rinçage

Ces réservoirs servent de réservoir tampon pour le perméat des trains RO utilisé pour le rinçage des pompes HP des turbochargeurs et membranes en cas d'arrêt. Le perméat des trains RO s'écoule par gravité vers les réservoirs de l'eau traitée. De plus ce réservoir est la source de l'eau de service pour le site.

4.3. Système de nettoyage chimique RO (CIP : cleaning in place)

> Un système de nettoyage est prévu pour traiter les membranes RO elles s'encrassent

4.4. Dosage de hydroxyde de sodium.

Afin de maximiser l'enlèvement du bore il sera procédé en amont des trains RO au dosage de hydroxyde de sodium pour élever le pH.

4.5. Dosage d'antitartre :

dans le système RO la cause principale du souci pour l'entartrage est la précipitation du carbone de calcium dans le rejet de saumure. Afin d'éviter l'entartrage des membranes il est prévu le dosage de l'acide sulfurique ou d'un antitartre pour contrôler cet entartrage pour les membranes RO

Fig15 : Les différentes compartiments d'osmose inverse dans la station de dessalement de Mektaa

III. 5. Dosage de dioxyde de carbone et de la chaux

Ce dosage aura pour conséquence d'avoir une eau traitée de 60mg/l (comme CaCO3) au minimum selon les exigences des les spécifications de la qualité de l'eau traitée.

La réaction suivante :

$$CO_2 + H_2O + CaCO_3 \rightarrow Ca (HCO_3)_2 \rightarrow Ca^{2+} + 2HCO_3^{-1}$$

Dans la pratique le dioxyde de carbone sera injecté à une dose fixe prédéterminé et le dosage de la chaux sera commandé par le pH à un point désiré prévu pour etre autour de pH 8 et 8.2

III.6. Système de pompage de l'eau produite.

Le système de pompage de l'eau produite est composé d'une seule ligne composée de :

Deux (4) réservoirs d'eau produite de 43.750 m³

Les pompes de l'eau produite à travers le Réseau Extérieur de Transport de l'Eau :

- \blacktriangleright Line1 : 2+2 en stand by
- \blacktriangleright Line2 : 4+2 en stand by
- \blacktriangleright Line3 : 6+1 en stand by
- Une (1) pompe de réserve de l'eau produite
- Un débitmètre
- Un système d'échantillonnage

Fig16 : schéma de la station de dessalement de Mektaa, de l'étape de captage jusqu'à la distribution a ADE

Fig17 : Logiciel SCADA de fonctionnement de la station de dessalement de Mektaa

III.2.10.Vérification des paramètres de qualité

Les valeurs garanties de la qualité de l'Eau Commercialisable pour chaque Unité de Dessalement et pour l'Usine seront conformes aux valeurs de la directive de l'Organisation Mondiale de la Santé (O.M.S.) pour la qualité de l'eau potable en vigueur en 2003. Pour les paramètres suivants, les valeurs qui seront à respecter aussi bien pour chaque Unité que l'Usine, sont comme suit:

۶	Matière Totale Dissoute	150 < MTD < 500 ppm
	Dureté totale CaCO ₃	80 < DT< 150ppm
	Alcalinité	pas moins de 60 ppm CaCO ₃
	pН	7.5-8.5
	Indice Langelier	0-0.4
\triangleright	Chlore résiduel	1.0 ppm au minimum
	Chlorures :	comprise entre 30 et 25 ppm

Sodium : comprise entre 30 et 200 ppm

En vue du contrôle des la conformité avec les directives de l'OMS (version 2003), pour chaque échantillon prélevé, il sera procédé, seulement, aux analyses physicochimiques suivantes :

- ➢ Le calcium
- Le magnésium
- Les bicarbonates
- Les carbonates
- Les sulfates
- Le chlore libre
- ➢ La turbidité

Les différentes analyses chimiques seront réalisées selon les normes ISO en vigueur.

Pour le calcul du LSI il sera opté pour la norme .

Pour chaque Unité ainsi que pour l'Usine, l'élément de référence pour la comparaison des Valeurs de Performance Technique Garanties fixés contractuellement, est la moyenne des résultats d'analyse des huits échantillons.

III.2.10. Moyenne de la Consommation Electrique

Consommation Spécifique Garantie d'Energie Electrique : Le taux d'efficacité énergétique garanti de l'Usine exprimé en kilowattheure (s) par mètre cube d'Eau.

Selon les données recueillit au niveau de système ERI au niveau des blocs de séparations membranaires par osmose inverse ,il a était constaté que la moyenne de la consommation énergétique consommé est de l'ordre de 4.077KWh/m³

Fig18 : Réseau d'alimentation en électricité de la station de dessalement de Mektaa

Suite à cette présentation , nous avons constater l'apport énergétique important dans le fonctionnement de la station de dessalement des eaux de mers de la région de Mektaa. Dans ce qui suit, nous allons faire une comparaison entre les valeurs de la consommation énergétique réel avec turbochargeurs de la station et les résultats de simulation par les logiciels IMS et TORAY.

Mais avant de passer à la comparaison, nous allons faire une présentation de ces logiciels

Chapitre IV

Mode de fonctionnement des logiciels Toray et IMS Design

III.1.Introduction

Les logiciels de simulation sont utilisés dans les études de dimensionnement des stations de déminéralisation des eaux et cela pour aboutir aux différents modèles de configurations membranaires, et cela dans le but de satisfaire les exigences du client en matière qualité et quantité d'eau produite avec un cout énergétique le moins élevé.

En particulier dans ce travail, nous allons utiliser les logiciels IMS design conçu par la société hydranautics et Toray DS2 conçu par la société Toray membrane, cela se traduit par une différence de la nature des membranes utilisés, ce qui va nous permettre de connaitre aussi l'éfficacité énergétique des systèmes de conversion d'énergie pour chaque type de membranes dans les conditions opératoires bien précis. comme le pH,La pression du concentrât ,la température

Les différentes étapes de dimensionnement d'un système membranaire par logiciels Etape1 Calcul du nombre d'éléments dans chaque tube de pression et la pression du tube de pression

Fig19 : Dimensionnement des éléments dans un tube de pression

Etape2

Calcul de la concentration du perméat en fonction des paramétres de fonctionnement tel que le Taux de conversion

$$Y(\%) = \frac{Q_p}{Q_a}.100$$

Le débit du concentrât Qc

Etape3

Calcul de la pression d'alimentation

Etape4

Calcul du débit d'alimentation pour chaque élément contenu dans le tube de pression

Etape5

Calcul de la consommation énergétique selon le système choisi

En générale, l'organigramme de fonctionnement de ces deux logiciels est décrit dans le schéma suivant ;

III.3. Etapes de simulation IMS III.3. 1.Etape 1 : Analyse : C'est l'étape ou on ajoute les analyse des eaux (eau de mer – eau traité – perméat...)

II IMSDesign		_ 0 X
🗧 💋 A propos Aide en ligne Valeurs de design		
Analyse Dimensionnement Calcul Post-traitement		
nouveau II II III III III		
Ouvrir Enregtons spécifiques Analyse multiple moenregistrer		
	Keinisialisabon Imprimer	
Fichier Projet Ontions Fores	nictrer analyse	
Device malitas Coludions IMS	The second s	
Projet: makkaa Calcule part and		100
pH 7,00 C03 0,415 mg/l C02 15,789 mg/l	E Conductività 55991.4 us/cm	00 1
		00
Cations Anions		
mg/l mg/l CaCO3 mg/l mg/l CaCO3	A	1
Ca 410,00 1025,00 HC03 152,00 124,59		
Ma 1310,00 5368,85 504 2740,00 2854,17	000 000	9.8.1
Na 11105,54 24142,48 Cl 19903,52 28072,66		
K 390,00 498,75 F 1,00 2,63		-
NH4 0,00 0,00 N03 0,50 0,40		0 2
Ba 0,050 0,04 P04 0,00 0,00		
Sr 13,000 14,84 Si02 15,00		
B 5		A
	0	1 2 3
Total, <u>meg/l</u> 621,00 Total, <u>meg/l</u> 621,10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1
A A A	A CONTRACTOR A CONTRACTOR	A + 7
Saturations		2
TDS calculé 36041 mg/l Ca504 20,9 %	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
Pression osmotique 26,4 bar BaSO4 198,8 %		A A
Ca3(P04)2 SI 0,00 Sr504 41,3 %		
CCPP 13,05 mg/l CaF2 17,7 %		
silice 12,1 %	New Leve	PANALITICS
		Group Company
Analysis New I. Devices New I. consists 4 000.04 0/ I. Enablished and the devices		1 I I I I I I I I I I I I I I I I I I I

Fig20 : image capture écran de l'étape analyse par IMS-Design

III.3.2.Etape 2 :

Dimensionnement : c'est la partie d'ajoute les condition et de choisi le type de membrane et même dans cette étape le calcul de consommation énergétique

Fig21 : image capture écran de l'étape de dimensionnement avant le calcul

Hydranautics - A Nitto Group Company, IMSDesign-2016	
A propos Aide en ligne Valeurs de design	
Analyse Dimensionnement Calcul Post-traitement	
🗐 nouveau 🛛 💽 mélange perm. 🏹 Hybride 🔄 🕞	, 🛅 , 🏌 🖛 📈 📟
Couvrir Enreg pression perm. 👸 ERD retour Schéma flottant Résumé Calc. Imprimer	Diagramme des débits de base partiel Split partiel Outils calculatrice
Benregistrer Becirculation Pompe Booster	
Fichier Projet Options Actions	Deux Pass Outils
Projet: sea water RO1 Calculé par: ims design Température: 25,0 <u>°C</u> Type d'eau:	Eau saumâtre de forage faible colmDate: 08/05/2017
Trains Pass1 Pass1	
pH alimentation 8,30 Produit chimique H2504 -	
Taux de conversion % 45,00 Concentration de la solution, % 100 ÷	
Débit perméat, m3/d v 100000,0 taux de dosage de mg/l v 0,385	
Flux moyen Imh 14.4 Âge membranes années 5,0	
Débit alimentation, m3/d 222222,2 Perte de flux %, par an 5,00	
Débit rejet m3/d <u>122222,2</u> <u>Coefficient de colmatage</u> 0,774	
passage en sels 7,0	
Résultats de calcul (Tous les débits sont par tu	Calculs FRD
Alimentation Constitute Alimentation Constitute Alimentation Constitute flux le plus bêta le plus	Echangeur de pression
(bar) Conc (bar) (m3/h) Conc (m3/h) elevé (lmh) élevé (lmh) élevé	Fuite 1,00 %
	Mélange volumétrique 6,00 %
	Différentiel H.P. 7,25 bar
Concentration perméat	Pression Boost 8,63 bar
Ca 1,325 K 7,515 Sr 0,044 Cl 270,095 P04 0,000 C02 0,781	A avertissement:
Na 167.291 Ba 0.000 S04 9.452 F 0.038 B 0.000 pH 6.8	
TDS 463,63 mg/l	Séquestrant nécessaire.
Saturations at paramètres concentrat	
Ca504, % 47 Sr504, % 98 Force ionique 1,33 pH 8,5	
BaS04, % 0 Si02, % 0 Pression osmotique 48,8 bar TDS 66876,5 mg/l	
Ca3(P04)2 0,00 CaF2, % 345 Langelier 2,05	
Analysis : New Design : sea_RO_SWC645 Version : 1.215.69 % Email : imsd-support@hydranauticsprojections.net Screen rej	solution : 1366 X 768 Font Size : 100 % (96 DPI) 🔗 calculé avet succès
	FR 10:40
	08/05/2017

Fig22 : image capture écran de l'étape de dimensionnement après le calcul

III.3.3.Etape3

Calcul : c'est l'étape de l'affichage des résulta de calcul de consommation énergétique

Fig23 : image capture écran de l'étape calcul

Créé le : 21/05/2018 04:23:54

	Echangeur de pression													
Nom du	projet												page	: 1/3
Calculé	par				IMS			fic	ux / train	perméa	at		20840.00 m3	3/h
Débit Po	ompe HP					21086.14	4 m3/	h éo	ouleme	nt de l'e	au brute /			
Pression	n aliment	ation		66.7				tra	ain				46476,36 m3	3/h
Tempér	ature alin	nentation				25.0	°C(77.0 ¹ F) Ta	aux de o	onversi	on perméat		44,84 %	
pH eau	alimentat	tion				8.0	ò	A	ge élém	ent			0,0 an	nées
Dosage	produit o	himique.n	na/l			H2SO	4	D	éclin du	flux %,	par an		5,0	
Fulte							1.76	C	oefficier	t de col	matage		1,00 %	
Mélanor	e volumé	trique					5 %	P	erte de f	lux par a	an,%		7,0 %	
Différen	tiel H.P.					1.0) bar							
Pression	Boost					4.9	bar							
Energie spécifique						2.5	4 kwh	/m3						
NDP pa	55					28.0	5 bar							
Flux moyen					22.1	7 Imh								
						T) al	/pe Imentati	on	Eau	de mer Surface	conventionnel			
Pass -	Perm.	Débit	/ Tube	Flux	DP	Flux	Flux Bêta p		ssion par étage Perm			Elément	Elément	PV#1
		Aliment	_			max								Elem
Etage	Débit	ation	Conc					Perm.	Boos	at C	one TDS	Туре	Quantité	
	m3/h	m3/h	m3/h	Imh	bar	lmh		bar	bar	t	oar mg/l			
1-1	20829, 8	16,6	9,2	22,7	3,9	37,5	1,03	3 0	0	6	2,8 90,8	SWC4 MAX	22400	2800 : 8M
								Eau	Impr	égner				
lon (mg	1)			Eau b	rute	eau méla	ngee	alimentation	i l'e	sau	Concentrat	Rejet ERD		
Dureté,	CaCO3			63	93,85	65	74,71	6574,7	1	3,939	11911,4	11580,33		
Alkalinit	y, as Cal	203		1	29,96	1	34,88	134,8	В	0,541	251,7	0,00		
Ca				4	10,00	4	21,60	421,60	0	0,253	763,8	742,58		
Mg				13	10,00	134	\$7,05	1347,0	5	0,807	2440,5	2372,63		
Na				111	05,54	114	18,93	11418,93	3	32,812	20666,6	20092,83		
к				3	90,00	4	01,00	401,00	0	1,440	725,5	705,38		
NH4					0,00	0,00		0,0	0	0,000	0,0	0,00		
Ba					0,050	0,051		0,05	1	0,000	0,1	0,09		
Sr				1	3,000	13,368		13,368	8	0,008 24,2		23,55		
н					0,00		0,00	0,0	0	0,001 0,0		0,00		
003					3,19		4,40	4,40		0,000 15,8		15,10		
HCO3				1	52,00	156,03		156,03	0,744		274,8	267,43		
SO4					0,00		0,00	0,0	0	0,000	0,0	0,00		
CI				199	03,52	204	55,32	20465,3	2	54,229	37042,9	30014,05		
F					1,00		1,03	1,00	3	0,005	1,9	1,81		
NU3					0,50		0,51	0,5	1	0,010	0,9	0,90		
PO4					0,00		0,00	0,0		0,000	0,0	0,00		
OH					0,00		0,02	0,0	2	0,000	0,0	0,03		
5102					15,00	1	10,42	10,4	2	0,031	27,9	27,15		
B					5,00		0,13	0,1	3	0,405	9,0	8,73		
002 TDC				222	1,09	2.40	1,59	24240.0/	9	1,09	1,09	1,09		
ID3				333	00,00	342	0.00	34248,0	•	5 00	01993,02	00272,01		
рн					0,00		0,00	0,0		3,66	0,23	0,23		
Saturat	ions	00.04				E	Eau bi	rute	Eau a	limenta	tion	Concentrat	Limi	tes
SrSO4	ken 140	0.56					0			0		0	40	0
BaSO4	/kep 14	00.06					0			0		0	120	~
Ba304	hundler i	NU, 78										10	100	
Carro ::	wration,"	10					11			10		18	14	
Cap (p)	Day 2 level	, 70	unition				1/			0.0		0.0	500	
CCPP -	24) 2 md	ue de sat	uration.				0,0			0,0		114.22	2,4	
COPP, I	ing/i						30,3			0.60		114,33		
Purce lo		nue har					0,0			0,08		48.2		
Pressio	osmotic	que, par					20,			20,0		48,2		

Les calculs de performance du produit sont basés sur la performance nominale de l'élément loraguil est utilisé avec une eau d'alimentation de qualité acceptable. Les résultats présentées sur les impressions produites par ce programme sont des estimations de la performance du produit. Aucune garantie de produit ou performance de système n'est exprimée ou auggérie à moins qu'elle ne soit fournie dans une déclaration districté de garantie signée par un représentant autorisé d'Hydranautics. Les acclus de consommation de produit a chimiques sont fournie pour d'autement du pri dépendent de l'eau d'internation de les produit du performance du système est requise, menc de contacter voire représentant Hydranautics. Les garanties est et les non-standard ou élenduse pouvert entrainer un prix d'Élément des devis précédemment fournie. : Les 22.81 % Email : imad-supprojetiony/dranautics.com

Créé le : 21/05/2018 04:23:54

	Echangeur de pression															
Nom du	i projet														page : 2	2/3
Calculé	par				IMS			1	flux / tra	in per	méat			2084	0,00 m3/h	
Débit P	ompe HP					21086,1	4 m3/h		écoulen	nent de	e l'eau brute	1				
Pressio	n alimenta	ation				66,	7 bar	1	train					4647	6,36 m3/h	
Tempér	ature alim	nentation				25,	0 °C(77.0)'F) '	Taux de	conv	ersion perme	bat		4	4,84 %	
pH eau	alimentat	ion				8,0	0		Age élé	ment					0,0 anné	85
Dosage	produit d	himique,m	g/1, -			H2SO	4	1	Déclin d	lu flux	%, par an				5,0	
Fulte							1 %		Coefficie	ent de	colmatage				1,00 %	
Mélang	e volumét	rique					5 %		Perte de	e flux p	oar an,%				7,0 %	
Différen	tiel H.P.					1,0	0 bar									
Pressio	n Boost					4,9	1 bar									
Energie	spécifiqu	e				2,5	4 kwh/m3	3								
NDP pa	155					28,	6 bar									
Flux mo	yen					22,	7 imh									
								1	Type alimenta	ation		Eat	u de mer S	urface o	convention	lei
Pass -	Perm.	Débit /	Tube	Flux	DP	Flux	Bêta	P	ression	par é	tage	Perm.	Eléme	int	Elément	PV# x
		Allment				-										Elem #
Etage	Débit	ation	Conc			max		Perm	. B	oost	Conc	TDS	Type		Quantité	
	m3/h	m3/h	m3/h	imh	bar	lmh		bar	1	bar	bar	mail				
	20829															2800 x
1-1	8	16,6	9,2	22,7	3,9	37,5	1,03	0		0	62,8	90,8	SWC41	XAN	22400	8M
		Alimentati				in	nprégner	Imprég	ne							
Pass -	Elément	on	Pression	Conc	1	NDP	reau	r l'ea	u B	êta		Perm	néat (Cumi	il des pa	155)	
Etage	No.	Pression	Perte	Osmo			Débit	Flux			TDS	Ca	Mg	Na	Ci	
		bar	bar	bar		bar	m3/h	lmh								
1-1	1	66,7	0,71	29,3		37,5	1,5	37,5	1	,03	41,1	0,114	0,366	14,87	24,575	
1-1	2	66	0,62	32,2		33,9	1,3	32,6	1	,03	46,2	0,128	0,41	16,686	27,576	
1-1	3	65,4	0,55	35,1		30,5	1,1	28	1	,03	51,8	0,144	0,461	18,738	30,966	
1-1	4	64,8	0,49	38		27	1	23,6	1	,03	58,2	0,162	0,517	21,044	34,779	
1-1	5	64,3	0,44	40,8		23,8	0,8	19,7	1	,03	65,3	0,182	0,581	23,612	39,023	
1-1	6	63,9	0,4	43,5		20,7	0,7	16,3	1	,02	73,1	0,203	0,65	26,439	43,695	
1-1	7	63,5	0,37	46		17,8	0,5	13,4	1	,02	81,6	0,227	0,726	29,516	48,781	
1-1	8	63,1	0,34	48,2		15,2	0,4	10,9	1	,02	90,8	0,253	0,807	32,828	54,255	

Les calculs de performance du produit sont basés sur la performance nominale de l'élément longui? E est utilisé avec une eau d'alimentation de qualité acceptable. Les résultais présentés sur les impressions produits par ce programme aont des estimations de la performance du produit. Aucune garantie de produit ou performance de système n'est exprimé ou suggéréé à moins qu'elle ne soit tourne dans une déclaration disincle de garante signée par un représentant autorisé d'hydranautice. Les calculs de concementation de produit chimiques aont lournis pour commotifé et anni basés sur devrase hydrothéses concement à qualté et la compatition de produit chimiques. Si une garante de produit ou système est requise, marci de contacter voire représentant Hydranautice. Les garantes non-atlanded ou étenduse pouvert entrainer ou pris d'Itérent des devis précidemment lournis. Version : 1.222.81 % Email : imsé-support[@tydranautica.com

Créé le : 21/05/2018 04:40:32

Stream No.	Débit (m3/h)	Pression (bar)	TDS (mg/l)	pH	Econd (µs/cm)
1	46476	0	33309		52955
2	21082	0	33310		52960
3	21082	67,3	33310		52960
4	46476	67,3	34250		54368
5	25651	65,2	61990		95243
6	25651	0	60269		92737
7	25394	0	33310		52960
8	25394	67,3	35030		55535
9	20840	0	83,9		182

50

Créé le : 21/05/2018 05:00:16

						E	chan	geur de pre	ession					
Nom du	projet												pag	je : 1/3
Calculá					IMS.				v / train ner	mán			20840.00	n3/h
Dábit D	par more HP				inna	21077.86 m3/h		h ác	nux / train permeat				20840,00 1	nam
Pression	aliment	ation				21077,0	t har	tra	un u	010			46476.36 r	n3/h
Tempér	ature allo	neotation				25	0.10/2	Talicia Ta	ux de conv	ersio	n perméat		44.84	16
nH eau	ature ani	tion				20,	0 0(/	Ac	e élément				0.0 7	innées
Docade	produit c	thinks a r	nad .			U250		De	éalin du flux	(%, p	bar an		5.0	
Eulle	produite	annique,i	ngn, -			hedo	4 76	Co	pefficient de	e coin	natage		1.00 1	6
Mélanov	a wakumé	trimum					6 76	Pe	erte de flux	par a	in.%		7.0	%
Différen	tel H P	unquru				1.0	0 bar							
Pression	Boost					4.8	2 har							
Energie	spécifiqu	10				2.3	0 kwh	/m3						
NDP na	specing					22	2 har							
Flux mo	ven					22	7 Imh							
	,							-			-	5 . t		
								Ty	pe mentation		Eau	de mer Surface	conventionn	
Pass -	Perm.	Débit	/ Tube	Flux	DP	Flux	Bêta	pres	sion par ét	age	Perm	Elément	Elémen	t PV#x
		Allment	-			max				-			-	Elem #
Etage	Debit	ation	Conc					Perm.	Boost	Co	no TDS	Туре	Quantite	e
	m3/h	m3/h	m3/h	imh	bar	lmh		bar	bar	b	ar mg/l			
	20821,								_	_		-		2800 x
1-1	5	16,6	9,2	22,7	3,8	42,3	1,04	0	0	50	5,3 127,9	SWC5 MA	X 22400	8M
								Eau	Imprégn	er	-			
Ion (mg	1)			Eau b	rute	eau méla	ngée	alimentation	reau		Concentrat	Rejet ERD		
Dureté,	CaCO3			63	93,85	65	74,59	6574,59	9 5,	545	11906,0	11575,28		
Alkalinit	y, as Ca0	003		1	29,96	1	34,87	134,87	7 O,	809	251,4	0,00		
Ca				4	10,00	4	21,59	421,59	9 0,	356	763,5	742,25		
Mg				13	10,00	13	47,03	1347,03	3 1,	136	2439,4	2371,59		
Na				111	05,54	114	18,43	11418,43	46,	180	20648,1	20075,45		
к				3	90,00	4	00,98	400,98	3 2,	026	724,8	704,67		
NH4					0,00		0,00	0,00) 0,	000	0,0	0,00		
Ba					0,050		0,051	0,051	0,	000	0,1	0,09		
Sr				1	3,000	1	3,367	13,367	7 0,	011	24,2	23,53		
н					0,00		0,00	0,00	0, 0,	001	0,0	0,00		
CO3					3,19		4,40	4,40	0, 0,	000	15,8	15,08		
HCO3				1	52,00	1	56,02	156,02	2 1,	046	274,6	267,21		
S04					0,00		0,00	0,00	0 0,	000	0,0	0,00		
CI				199	03,52	204	64,48	20464,48	3 76,	321	37011,5	35985,14		
F					1,00		1,03	1,03	B 0,	008	1,9	1,80		
NO3					0,50		0,51	0,51	0,	014	0,9	0,89		
PO4					0,00		0,00	0,00	0 0,	000	0,0	0,00		
OH					0,00		0,02	0,02	2 0,	000	0,0	0,03		
SIO2					15,00		15,42	15,42	2 0,	043	27,9	27,13		
B					5,00		5,12	5,12	2 0,	692	8,7	8,49		
002				000	1,69	2.40	1,59	1,59	1	1,59	1,59	1,59		
IU3				333	00,00	342	90,92	34240,42		0.04	01941,19	0.223,34		
pn					0,00		0,00	0,00		5,01	0,23	0,23		
Saturat	ions					I	Eau br	ute	Eau alime	entat	ion (Concentrat	Lin	nites
CaSO4	/ KSP * 10	00,76					0		0			0	4	200
ara04/	Ksp 10	NJ, 78					0		0			0	1	200
BaSO4	/ Ksp * 10	uu, %					0		0			0	10	000
Gara in	wration,	70					11		11			18	1	40
CaF2/I	sp 100	1, 76					17		19			109	50	000
Ca3 (PC	24) 2 ind	ce de sat	uration				0,0		0,0			0,0	2	2,4
COPP, I	mg/i						30,3		38,4	•/		114,19		
Force lo	inique						0,60		0,6	8		1,22		
Pressio	n osmotio	que, par					20,8	9	20,	0		48,2		

Les calculs de performance du produit sont basés sur la performance nominale de l'élément lonsqu'il est utilisé avec une eau d'alimentation de qualité acceptable. Les résultats présentés sur les impressions produites par ce programme aont des estimations de la performance du produit. Aucune garantie de produit ou performance de système n'est exprimé ou auggérie à moins qu'elle ne soit fournie dans une déclaration distincté de garantie aignée par un représentant autorisé d'Hydranautics. Les acclus de consommation de produits chimiques sont fournie pour apartement du pri dépend de l'eau d'initiante du les aparties par la composition de l'eau. Etnit donné que la qualité réelle de produit n'initique nicessaite pour l'austement du pri dépend de l'eau d'initiante autoris d'Hydranautics. Les garantie de produit ou système est requise, menc de contacter voire représentant Hydranautics. Les garanties non-standard ou élenduse pouvert intraîter un prix different des devis précédemment fournis. Version : 1.222.81 % Email : imad-support[thydranauticsprojections.net

Toray Design System 2.0	Contraction of the local sector	
Fichier Outils Configuration	du projet Unité Aide Voir Rapport rapide Enregistrer maintenant en tant que nouvelle révision	
Démarrer Projet Paramètres d'Alimer	tation Conception OI Rapport	
Nom du projet: Ffe	t du colmatane membranaire sur la consommation énemético e en osmose inverse/hest///elements 🔍 🗸 🔘 *	
Projet Toray ID:	Regas 89	
Ingénieur:	TORAY *	
Remarques :		
	Supprimer le Projet actuel	
Numéro du cas: 3		
	noureau cas	
Description du cas:	Seawater Systems *	
Révision: 0	Supprimer la Version	
Description de la Révisio	10. T=25.0.deg C. Recov=46.9%, FF(Elem1)=0.85, SPI/Elem1)=0.07, Sea Open, Feed: 22176.7 m3/hr, TDS: 36063.0, Perm: *	
AL LUCY -		
Nom de l'utilisateur:	regas * date de la U3-mai-2018 💌 *	
Préparé pour:	TDS2 CLIENTS	
	Ouvrir Erregister Erregister nouvelle révision cours	
		Personnaliser
		FR 🔒 🔊 📭 👘 14:31
		×/ × × 19/05/2018

Pour le logiciel Toray les étapes d'exécution sont les suivantes :

Fig24 : image capture écran de l'étape calcul TORAY (A ; B ; C ; D; E ; F ; G)

rer Projet Paramètri	es d'Aimentation Conception OI Rapport	de chiegistier maintenant	en tant que nouveile	revision			
Solides Dissous T	otaux		lon	5			
	Informations sur le Courant	Cations		Courant a	ictuel: 1		
Type d'Eau:	Eau de Mer à prise ouverte	lons	mg/l	mEq / L	ppm CaCO3		
.,,,	14	Ca	410,00	20,4591	1023,87		
Nombre de Cour	ants d'Alime	Mg	1310,00	107,7 <mark>9</mark> 67	5394,69		
Courant d'Alimer	tation actuel: 1 Montrer la	Na	11115,11	483,4799	24195,75		
Dourcostado est	ual Courant d' 100 %	К	390,00	9,9749	499,20		
Fourcentage act		Ba	0,0500	0,0007	0,04		
	Paramètres de l'Alimentation	Sr	13,0000	0,2967	14,85		
		NH4					
Température:	25 deg C Débit: 22176,74m3/hr	Fe					
pH :	8,00 TDS 36079,173	Totaux	13238,1551	622,0081	31128,3946		
EstuS	52 689 Attribuer la TDS sous forme						
	Équilibrer % Excess Anion: 0000 %	Anions	mn/l	mFa / I	nnm CaCO3		
		HCO3	152.00	2 4911	124.67		
Charger/Examiner l'A	nalyse Equilibrer avec NaCl	d	19913.36	561,6832	28109.44		
🛛 Équilbrage autom	atique Equilibrer avec MgSO4	504	2740.00	57.0467	2854.90		
		N03	0.50	0,0081	0.40		
	données de solubilité	F	1,00	0,0526	2,63		
		Br	10,00	0,1252	6,26		
	A saturation a Conc.	В	5,00	0,4625	23,15		
Espèces loniques	21,47 % de la Solubilité Max.	Si02	15,00	0,2497	12,49		
Espèces loniques CaSO4		PO4					
Espèces loniques CaSO4 DaSO4	191,99 % de la Solubilité Max.		19.923	0.0000		🛛 🖓 🕄 Խ	
Espèces Ioniques CaSO4 BaSO4 GrSO4	191,99 % de la Solubitié Max. 23 % de la Solubitié Max. ≡		4,16	0,1387	6,94		
Espèces Ioniques CaSO4 3aSO4 SiSO4 204	191,99 % de la Solubité Max. 23 % de la Solubité Max. D % de la Solubité Max.	CO3		0.0270	1,85	v •	
Espèces Ioniques CaSO4 BaSO4 SiSO4 PO4 SiO2	191,99 % de la Solubité Max. 23 % de la Solubité Max. 0 % de la Solubité Max. 102 % de la Solubité Max.	C03 C02	1,63	0,0370			
Espèces Ioniques CaSO4 33504 33504 33504 33504 3302 302 2472	191,99 % de la Solubité Max. 23 % de la Solubité Max. 0 % de la Solubité Max. 102 % de la Solubité Max. 0,9 % de la Solubité Max.	CO3 CO2 Totaux	1,63 22841,0174	622,0081	31128,3954	0	

Image A

Image B

	0.0
	20
N Tordy Design System	210

Fichier Outils Configuration du projet Unité Aide Voir Rapport rapide Enregistrer maintenant en tant que nouvelle révision

total on The Republic

Projet		89:Effet du colmat	age membrana	ire sur la consomn	nation énergéti 葦 x 💏 nose ir	werse/test2/7elements					
Cas		3 Seawater Systems									
Révision		0 T=25,0 deg C, Recov=46,9%, FF(Elem1)=0,85, SPI(Elem1)=0,07, Sea Open, Feed: 22176,7 m3/hr, TDS: 36063,0, Perm: 10399,7, TDS: 310, Tot Elem: 24000, 1 st Elem: TM820C-400									
Type d'Eau Alimentation		Eau de Mer à pris	au de Mer à prise ouverte, Note: Auto Balance is ON								
Avertissements et Erreurs		Avertissements:6,	vertissements 6, Erreurs 0. Voir les remarques importantes à la fin /E								
Info Base de données:		Base de Donnée: Base de Donnée:	ase de Données du projet C:\Users\Poste-10\Documents\TorayDS2\App_Data\DS2.sdf(Ver.2,6) ase de Données Membrane (V20148) :.								
				Dans l'ensembl	e	Passer 1					
TDS eau brute		mg/L		36 079,2		36 079,2					
Alimentation EC @25C / @25,00C		uS		52 688,8 / 52 688	3,8	52 688,8 / 52 6	38,8				
Pression d'Alimentation		bar		0,0		53,11	53,11				
Température	re			25,00							
P Totale		bar		0,273		0,273					
Pression du Concentrat	ression du Concentrat		bar			52,84					
Fouling Max		3,00 ans				0,850					
PS % Augmenttion (Max)		3,00 ans				22,50%					
Taux de Conversion		%		46,90%		46,9%					
Débit d'Alimentation		m3/hr		22 177		22 177	22 177				
Débit Produit		m3/hr		10 400		10 400	10 400				
Flux moyen		l/m2/hr	l/m2/hr			9,958	9,958				
Débit Concentrat		m3/hr		11 777		11 777					
TDS Produit		mg/L		355,8		355,8					
TDS Concentrat		mg/L		67 625		67 625					
kW Pompe HP primaire		kilowatt		41 952,75		41 952,75	🔒 🖁 🖕				
Consommation Energétique		kWh/m^3		4,034		4,034					
lons			Alimentation		Alimentation Net	Conc.	V				
Ca	mg/L		410,0		410,0	771,0					
Mg	mg/L		1 310		1 310	2 463	Personnaliser				
Na	mg/L		11 115		11 115	20 819		J			

Image C

 \square

- 0 X

Image D

Rapport d'Ensemble du Système

Projet		TDS2 USER 98:MEKTAA		TM820M400 PH8 T25 Avec ERI 34 bar							
Cas		4 Seawater O	pen								
Révision		0 50% Recov	Recov, 1 Pass, RO Permeate, Feed: 16.0 m3/hr, TDS: 40926.1, Perm: 8.0, TDS: 370, Tot Elem: 16, 1st Elem: TM820-								
Type d'Eau Alimentation		Eau Saumátre	de Surface	MF/UF, Note: A	Auto Balance is ON						
Avertissements et Erreurs		Avertissemen	ents:1, Erreurs:0. Voir les remarques importantes à la fin /E								
Info Base de données:		Base de Donn Base de Donn	nées du proj nées Membr	et: C:\Users\Adi ane (V.20148) :.	ministrateur\Documents\Te	orayDS2\Ap	p_Data\DS2.sdf((Ver:2,6)			
				Dans l'ensen	nble		Passer 1				
TDS eau brute		mg/L		35 496,5			35 496,5				
Alimentation EC @25C / @2	5,00C	uS		53 754,3 / 53	754,3		53 754,3/ 53 754	4,3			
Pression d'Alimentation		bar		0,0			59,63				
Température		deg C		25,00							
DP Totale		bar		0,968			0,968				
Pression du Concentrat		bar		34,00			58,66				
Fouling Max		3,00 ans					0,850				
PS % Augmenttion (Max)		3,00 ans					33,10%				
Taux de Conversion		%		44,86%			44,9%				
Débit d'Alimentation		m3/hr		45-456			46 456				
Débit Produit		m3/hr		20 839			20 839				
Flux moyen		l/m2/hr		17,459			17,459				
Débit Concentrat		m3/hr		25 616			25 616				
TDS Produit		mg/L		199,5			199,5				
TDS Concentrat	mg/L			64 211			64 211				
kW Pompe HP primaire	HP primaire kilowatt			82 660,24			82 660,24				
urbocharger GenericPuissance kilowatt			12 447,65								
Pression de refoulement SP	RE	bar		34,00							
Consommation Energétique	2	kWh/m*3		3,967			3,957				
lons			Alimentat	ion	Alimentation Net	Cont	1	Produit			
Ca	mg/L		410,0		410,0	743,	0	0,664			
Mg	mg/L		1 310		1 310	237	4	2,121			
Na	mg/L		11 140		11 140	201	45	71,21			
ĸ	mg/L		390,0		390,0	704,4	•	3,491			
Ba	mg/L		0,05		0,05	0,0906		8,09E-05			
Sr	mg/L		13,000		13,000	23,5	5	0,021			
NH4	mg/L		0,0		0,0	0,0		0,0			
Fe	mg/L		0,0		0,0	0,0		0,0			
HCO3	mg/L		152,0		152,0	274,3	2	1,291			
a	mg/L		21 775		21 775	39.3	33	119,4			
SO4	mg/L		270,0		270,0	489.	3	0,471			
NO3	mg/L		0,500		0,500	0,900	3	0,0047			
F	mg/L		1,000		1,000	1,80	5	0,0094			
Br	mg/L		10,000		10,000	18,0	91	0,0548			
B (Bore)	mg/L		5,000		5,000	8,505	3	0,685			
SI02	mg/L		15,000		15,000	27,1	2	0,128			
PO4	mg/L		0,0		0,0	0,0		0,0			
003	mg/L		4,103		4,103	7,36	7	0,0001			
002	mg/L		1,634		1,634	2,14	3	1,674			
TDS	mg/L		35 496		35 496	64.2	11	199,5			
Alimentation EC @25C / @25,00C	uS		53 754 / 5	3 754	53 754 / 53 754	87 6	33 / 87 633	416,1/416,1			
pH	pН		8,000		8,000	8,11)	6,070			
Pression Osmotique (DS1 / Pitzer)	bar		27,278/2	7,06	27,278/27,06	48,7	59 / 50,74	0,166/0,16			
ISL/ISSD			0,95/0,1	3	0,95/0,13	1,81	/ 0,60	-5,38/-5,39			
CaSO4 / SrSO4 %	96		2,2%/2,3	3%	2,2% / 2,3%	4,6%	/5,8%	0,0% / 0,0%			
BaSO4 / SIO2 %	96		19,5% / 1	0,2%	19,5% / 10,2%	32,6	32,6% / 17,4%				

Toray TDS2: MEKTAA TM820M400 PH8 T25 , 50% Recov, 1 Pass, RO Permeate, Feed: 16.0 m3/hr, TDS: 40926.1, Perm: 8.0, TDS:

Page 1/5

Image E

Pitzer % Solubilité	Calcite/Dol	etimo	236% / 13 906%	236% / 13 906%	808% / 171 212%			
Pitzer % Solubilité	CaSO4/SrS	04	2%/4%	2%/4%	5% / 8%			
		-	1000					
Informations Etage/Banc		Passe1	Etage 1	Etage 1				
Type de l'Element de tele		-	TMB20V-40	TM820V-400				
Type du dernier Element		22000	1 MB20/V-40	TM820V-400				
Exements au rotal		32000	32000	32000				
Tube au Total Éléments par Tube		4000	4000	4000 8 8				
		- 78.	8					
Debit d'Alimentation		mamr	40 400	40.400				
Debit Produit		manr	20 840	17.460				
Flux moyen		Vm2/hr	17,409	17,409				
Flux de Concentrat		m3/hr	25 616	25 616				
Taux de Conversion %		96	44,86 %	44,85 %				
Pression d'Alimentation	1	bar	55,23	55,23				
dP Éléments		bar	0,942	0,942				
Pression de Boost		bar	0,0	0,0				
Perte de charge dans le	es canalisations:	bar	0,0					
Net (Boost - dP canalisa	ations)	bar	0,0	0,0				
Pression du Concentrat	1	bar	54,29	54,29				
Pression du Perméat		bar	0,0					
TDS Alimentation		mg/L	35 496					
TDS Perméat		mg/L	231,9					
Elément de tête		Passe1	Etage 1					
Débit d'Alimentation		m3/hr	11,614					
Débit Produit		m3/hr	1,089					
TDS Produit		mg/L	104,2					
Flux		Vm2/hr	29,20					
Demier Élément		Passe1	Etage 1					
Débit Produit		m3/hr	0,252					
TDS Produit		mg/L	734,6					
Ratio Concentrat/Permi	éat	ratio	25,46					
Flux de Concentrat		m3/hr	6,404					
Force Motrice		bar	4,860					
Bêta			1,049					
Produits chimiques 100	Win Disclaimer Th	oso estimate	helpivon are sets are provided	as a courtesy to Toray DS2	heathers and are not migranteed			
Aucun Produit Chiminu	e ainuté		or wome reversion of a province of	as a countrary to rotary over	and a star and the gam arriterie.			
Aucuit i fount chillingu	a alocita							
Avertissements								
1. Indice Stiff Davis Con	c. =0,61 Attention	Findice de S	aff Davis (ISSD) est supérie	eur à 0.Inhibiteur de tartre né	cessaire.			
Erreurs								
Disclaimer : The progra expected system perfor miscalculation in the pro scaling and chemical at	m is intended to b mance, based on ogram. The obtaine tacks, to account	e used by per the average, id results can for piping an	rsons having technical skill, nominal element-performa not be used to raise any cli d valve pressure losses, fe	, at their own discretion and ance and are not automatica aim for liability or warranty. It ed pump suction pressure a	risk. The projections, obtained wi ily guaranteed. Toray shall not be t is the users responsibility to main nd permeate backpressure. For	th the program, are the liable for any error or ke provisions against fouling, questions please contact us:		
Totay Industries, Inc., Water T 1-1, Nikosbashi-mutomachi 2- TEL +81-3-3245-4540 FAX +8	Treatment Division, RD chome, Chuo-ku, Toky 11-3-3245-4913	Membrane Prod o 103-8666, Jap	kutts Degit. an					
Toray Membrane USA, Inc. 13435 Danielson St., Poway, TEL +1-858-218-2390 FAX +1	CA, 92064, USA -858-486-3063							
Foray Membrane Europe AG Grabenackenstrasse 8 P.O. Bo FEL +41-61-615-6710 FAX +4	ox 832 CH4142 Munct 11-61-415-8720	venatein 1, Switz	extand					
Toray Asia Pte. Ltd. / TEL +65 111 Scimenset Road, #14-01,	-6226-0525 FAX +65-4 Singapore 238164	1226-0509						
Toray Bluestar Membrane Co. Zone B, Tianzhu Airport Indus	, Ltd. /Tei +86-10-8048 trial Zone, Beijing 1013	5216 Fax +86-1 Hill, China	0-80485217					
http://www.toraywater.cr	am/							
Date / Heure :		21/05/2018	8 17:48:19					
Projet		TDS2 USE	ER 98:MEKTAA TM820V40	0 PH8 T25 Avec ERI 35 bar				
Cas		A-Securito	or Open					

Révision : 0:50% Recov, 1 Pass, RO Permeate, Feed: 16.0 m3/hr, TDS: 40826.1, Perm: 8.0, TDS: 370, Tot Elem: 16, 1st Elem: TM820-400

Toray TDS2: MEKTAA TM820V400 PH8 T25 , 50% Recov, 1 Pass, RO Permeate, Feed: 16.0 m3/hr, TDS: 40926.1, Perm: 8.0, TDS:

Page 2 / 5

Image F

Préparé pour :	
Remarques :	
Base de Données Membranes	
Numéro de la version:	20148
Date de publication:	19/03/2018
Mis à jour par:	YK
Version Toray DS2 :	2.1.1.145

Diagramme:

Information Courrant					
Numéro du Courant	Debit	Pression	TDS	EstuS	pH
20. Produit Final	20 839,39	0,0	223,1	474,1	4,470
4. Alimentation Net	46 455,64	0,0	35 579,56	53 859,4	6,000
10. Alimentation Passe 1	46 455,64	58,73	35 579,56	53 859,4	6,000
30. Concentrat vers saumure	25 616,25	34,00	64 349,66	87 793,7	6,245
34. Pression élevée à SRE	25 616,25	58,76	64 349,66	87 793,7	6,247
33. Boost vers Alimention	46 455,64	9,693	35 579,56	53 859,4	6,000
Détails des éléments dans le Passe1					

Passe 1 Etage 1	Élément 1	Élément 2	Élément 3	Élément 4	Élément 5	
Modèle	TM820M-400	TM820M-400	TM820M-400	TMB20M-400	TM820M-400	
Surface m2 / diamète pouce	37,30/8	37,30/8	37,30/8	37,30/8	37,30 / 8	
Age	3	3	3	3	3	
PS %/an	7	10	10	10	10	
PSI appliqué	22,50	33,10	33,10	33,10	33,10	
Fouling	0,850	0,965	0,955	0,955	0,965	
Taux de Conversion %	8,145	8,774	8,424	7,931	7,249	
Débit d'Alimentation(m3/hr)	11,614	10,668	9,732	8,912	8,205	
Débit Perméat(m3/hr)	0,946	0,936	0,820	0,707	0,595	
Débit Concentrat(m3/hr)	10,668	9,732	8,912	8,205	7,611	
Flux(i/m2/hr)	25,36	25,09	21,98	18,950	15,945	
Béta	1,142	1,149	1,137	1,123	1,108	
Pression d'Alimentation(bar)	59,73	59,55	59,39	59,26	59,14	
DP(bar)	0,176	0,156	0,137	0,121	0,108	
Pression Concentrat(bar)	59,55	59,39	59,25	59,14	59,03	
Pression Perméat(bar)	0,0	0,0	0,0	0,0	0,0	
PI_Feed(bar)	27,34	29,71	32,50	35,42	38,39	
Pi_Memb(bar)	32,48	35,61	38,48	41,33	44,04	
Pi_Conc(bar)	29,71	32,50	35,41	38,39	41,31	
Pi_Perm(bar)	0,0896	0,107	0,132	0,165	0,211	
Pression Net(bar)	27,26	23,98	21,00	18,052	15,282	

Toray TDS2: MEKTAA TM820M400 PH6 T25 , 50% Recov, 1 Pass, RO Permeate, Feed: 16.0 m3/hr, TDS: 40926.1, Perm: 8.0, TDS:

Page 3/5

Image G

Chapitre V :

Résultats et discussions

Résultats de la simulation de la déminéralisation de l'eau de mer par logiciel Toray Sans système ERI

Fig25 : Energie consommé en fonction du pH sans système ERI

Fig26: Energie consommé en fonction de la température sans système ERI

Fig27 : Energie consommé en fonction du pH avec système ERI

Fig28 : Energie consommé en fonction de la température avec système ERI

Fig29:Energie consommé en fonction de la pression de recirculation du concentrât avec système ERI

Résultats de la simulation de la déminéralisation de l'eau de mer par logiciel IMS

Avec ERI

Fig30 : Energie consommé en fonction de la pression de recirculation du concentrât avec système ERI (IMS)

Courbe de comparaison entre l'énergie calculé par simulation et l'énergie réelle de la station de Magtaa

Les conditions de simulation (P=34bar, T=25 °C, pH=8)

Fig31 :Comparaison entre les résultats de simulation par TORAY pour différents type de membranes et les données réelles de la station de Mektaa (Q_{Perméat}=500000 m³/jour,taux conversion=44.86%)

Fig32 :Comparaison entre les résultats de simulation par IMS pour différents type de membranes et les données réelles de la station de Mektaa (Q_{Perméat}=500000 m³/jour,taux conversion=44.86%)

Discussion des résultats

Suite aux résultats de simulation par les logiciels IMS et Toray dans différentes conditions, nous avons observer une diminution de la consommation énergétique avec l'augmentation de la température sans système de conversion d'énergie et avec l'utilisation des membranes Toray (Figure).

Il a était constaté aussi que les valeurs des consommations énergétiques avec l'utilisation de la membrane TM820M400, sont assez élevés dans la gamme compris 5.7 Kwh/m³ jusqu'a 4.6Kwh/m³

Cependant, nous avons observé que avec la membrane TM820V400 les valeurs de la consommation énergétique sont moins de l'ordre de 4.9KWh/m³ jusqu'a 4.2 KWh/m³ lors pour des températures

La figure montre que le pH na aucune influence sur les valeurs des consommations énergétiques avec des allures des courbes pratiquement constante avec un ordre décroissant des valeurs de consommation énergétique de la membrane TM820W400 jusqu'a la membrane TM820V440

Les résultats de simulation par Toray lors couplage des membranes avec le système ERI donne des résultats de consommation énergétique inférieure par rapport à la configuration simple avec des valeurs compris entre 4.6 KWh/m³ et 3.7 KWh/m³, cependant nous avons constaté une légère augmentation de la consommation énergétique avec l'accroissement du pH de 6,8 jusqu'a 9

Avec l'augmentation de la pression de recirculation du concentrât, la consommation énergétique augmente de façon linéaire ce qui montre l'effet important de la pression du concentrât dans l'efficacité énergétique du système ERI.

La courbe de comparaison entre le modèle simulés par le logiciel Toray et la consommation réelle de la station montre une légère différence dans les consommations énergétiques, mais avec des valeurs réduite pour les modèles simulés par le logiciel Toray

Avec l'utilisation des membranes IMS, l'effet de la température et la pression de recirculation du concentrât sont toujours mise en cause avec une augmentation linéaire de la consommation énergétique, cependant les résultats reste plus meilleures avec des différences de valeurs des consommations énergétique de l'ordre de 1.7KWh/m³ inférieur par rapport à la valeur de la consommation réel de la station

Nous avons constaté qu'avec l'utilisation de la membrane SWC6LD, la consommation énergétique est la plus faible de l'ordre de 2.18KWh/m³.

Interprétation des résultats

L'éfficacité énergétique des système membranaire, en présence des systèmes de conversion d'énergie ERI est fortement lié à trois paramètres qui sont la nature de la membrane, la température et la pression de recirculation du concentrât , ceci a été prouvé par une considérable entre les valeurs des consommations énergétiques réelle de la station et les résultats de simulation par les logiciels IMS et Toray.

Les résultats obtenus avec l'utilisation des membranes IMS donne des résultats beaucoup plus meilleures avec des gains énergétiques importa

Conclusion et perspectives

La station de déminéralisation des eaux de mers de la région de Megtaa possédant une capacité de production en eau douce de 5000000m³/jours consomme une énergie de 1'ordre de 2 millions de KWh/m³, ce qui représente une consommation très élevés .

Dans ce travail, nous avons pu montrer qu'il est possible de trouver des solutions pour réduire cette consommation en tenons compte des variations des paramètres hydrodynamiques et des propriétés lié à la nature des membranes utilisées.

Cette stratégie est basé sur l'amélioration des systèmes ERI par la mise en valeurs de tous les facteurs qui influe sur le système

Durant, les prochaines années, notre pays devra prendre en considération ce genre d'étude et cela dans le but de minimiser les pertes énergétiques et favoriser l'utilisation des ressources inépuisable tel que les énergies renouvelables

Références bibliographiques

[1] Val S.Frenkel, 'Seawater Desalination: Trends and Technologies, Desalination', Trends and Technologies, M. Schorr (Ed.), ISBN: 978-953-307-311-8, 2011.

[2] S. Loeb (1981). The Loeb-Sourirajan Membrane: How It Came About, in Turbak A.F. Synthetic membranes.Washington, DC: American Chemical Society. 9p.(ACS Symposium Series). doi: 10.1021/bk-1981-0153.ch001.

[3] B. Peñate, 'Energy Optimization of Existing SWRO (Seawater Reverse Osmosis) Plants with ERT (Energy Recovery Turbines): Technical and Thermo economic Assessment', Energy, Vol. 36, N°1, pp. 613 - 626, 2011.

[4] wahib mohammed naceur : Modélisation et optimisation de la Consommation d'énergie d'une station de dessalement par procédé d'osmose inverse en Algérie article N19 pp 6-8 2016

[5] A.M.K. El-Ghonemy, 'Waste Energy Recovery in Seawater Reverse Osmosis

Desalination Plants, Part1: Review', Renewable and Sustainable Energy Reviews,

Vol. 18, pp. 6 – 22, 2013.

[6] H. Boyé, 'Eau, Energie, Dessalement et Changement Climatique en Méditerranée', Août 2008. H. Boyé, 'Eau, Energie, Dessalement et Changement Climatique en Méditerranée', Août 2008.

[7] Ahmed M, Arakel A, Hoey D, Thumarukudy MR, Goosen MFA, Al-Haddabi M, Al-Belushi A. 2003. Feasibility of salt production from inland RO desalination plant reject brine: A case study. Desalination 158(1–3): 109-117

[8] wahib mohammed naceur : Modélisation et optimisation de la Consommation d'énergie d'une station de dessalement par procédé d'osmose inverse en Algérie article N19 pp 10 2016

[9] Mohammed abbas Modélisation et optimisation de la Consommation d'énergie d'une station de dessalement par procédé d'osmose inverse en Algérie article N19 pp 5-6 2016

[10] CORSIN P., MASSON C. : "Les pompes haute pression adaptées aux usines de dessalement d'eau de mer par osmose inverse", L'Eau, L'Industrie, les Nuisances, Vol. 265 (2003).

[11] Reza Dashtpour and Sarim N. Al-Zubaidy, Energy Efficient Reverse Osmosis Desalination Process, International Journal of Environmental Science and Development, 2012
[12] H. Boyé, 'Eau, Energie, Dessalement et Changement Climatique en Méditerranée', Août 2008.

[13] A. Arzate, 'Procédés de Séparation Membranaire et leur Application dans l'Industrie Alimentaire', Acer, 642-RVL-0508, Saint–Norbert d'Athabaska, 30 mai 2008.

[14] Mahmoud Abdel-Jawad (2001). Energy sources for coupling with desalination plants in the GCC countries. (Consultancy report prepared for ESCWA)

[15] H. Boyé, 'Eau, Energie, Dessalement et Changement Climatique en Méditerranée', Août2008.

[16] Erik D and Juan MP, 'A Case Suey: Energy Use and Process Design Considerations for Four Desalination Projects in California', In: IDA World Congress –Perth Centre Convention et Exhibition (PCEC), Perth, Western Australia, Sep. 4 - 9, 2011.

[17] <u>www.</u> <u>recoveryenergy.com</u> Advanced High Efficiency Energy Recovery," Irving Moch, Jr., Michael Oklejas, Kevin Terrasi, Robert A. Oklejas, International Desalination Association World Congress, 2005.

[18] Bennet A.(2013). Desalination: 50 years of progress. Filtration + Separation, vol.50, n°3, May– June, pp.32-39.

[19] World Health Organisation (2015) Progress on sanitation and drinking water, 2015 update and MDG assessment, 90p

[20] SCHNEIDER B. : "Selection, operation and control of a work exchanger energy recovery system based on the Singapore project", Desalination, Vol. 184, p. 1177-1190 (2005).

[21] IDE Technologies <u>http://www.ide-tech.com/</u> Additional information about ERI PX Pressure Exchanger energy recovery technology can be found
Annexe

Membrane Element

SWC4-LD
(Low Fouling Technology)

Performance:	Permeate Flow: Salt Rejection:	6,500 gpd (24.6 m ³ /d) 99.8 % (99.7 % minimum)	
Туре	Configuration: Membrane Polymer: Membrane Active Area: Feed Spacer:	Spiral Wound Composite Polyamide 400 ft ² (37.1m ²) 34 mil (0.864 mm)	
Application Data*	Maximum Applied Pressure: Maximum Chlorine Concentration: Maximum Operating Temperature: pH Range, Continuous (Cleaning): Maximum Feedwater Turbidity: Maximum Feedwater SDI (15 mins): Maximum Feed Flow: Minimum Ratio of Concentrate to Permeate Flow for any Element: Maximum Pressure Drop for Each Element:	1200 psig (8.27 MPa) < 0.1 PPM 113 °F (45 °C) 2-11 (1-13)* 1.0 NTU 5.0 75 GPM (17.0 m ³ /h) 5:1 15 psi	

* The limitations shown here are for general use. For specific projects, operating at more conservative values may ensure the best performance and longest life of the membrane. See Hydranautics Technical Bulletins for more detail on operation limits, cleaning pH, and cleaning temperatures.

Test Conditions

The stated performance is initial (data taken after 30 minutes of operation), based on the following conditions:

Notice: Permeste flow for individual elements may vary + or - 15 percent. Membrane active area may vary +/-4%. Element weight may vary. All membrane elements are supplied with a brine seal, interconnector, and o-rings. Elements are enclosed in a sealed polyethylene bag containing less than 1.0% sodium meta-bisulfite solution, and then packaged in a cardboard box.

Hydranautics believes the information and data contained herein to be accurate and useful. The information and data are offered in good faith, but without guarantee, as conditions and methods of use of our products are beyond our control. Hydramautics essures to liability for results obtained or damages incurred through the application of the presented information and data. It is the user's responsibility to determine the appropriateness of Hydramautics products for the user's specific end uses. 452/195

> Hydranautics Corporate: 401 Jones Road, Oceanside, CA 92058 1-800-CPA-PURE Phone: 760-901-2500 Fax: 760-901-2578 info@Hydranautics.com

	Membrane Element	SWC4 MAX
Performance:	Permeate Flow: Salt Rejection:	7,200 gpd (27.3 m ³ /d) 99.8 % (99.7 % minimum)
Туре	Configuration: Membrane Polymer: Membrane Active Area:	Spiral Wound Composite Polyamide 440 ft² (40.8m²)
Application Data*	Maximum Applied Pressure: Maximum Chlorine Concentration: Maximum Operating Temperature: pH Range, Continuous (Cleaning): Maximum Feedwater Turbidity: Maximum Feedwater SDI (15 mins): Maximum Feed Flow: Minimum Ratio of Concentrate to Permeate Flow for any Element: Maximum Pressure Drop for Each Element:	1200 psig (8.27 MPa) < 0.1 PPM 113 °F (45 °C) 2-11 (1-13)* 1.0 NTU 5.0 75 GPM (17.0 m ³ /h) 5:1 15 psi
* The limitations show ensure the best perform on operation limits, clear	n here are for general use. For specific projects, o nance and longest life of the membrane. See Hyd aning pH, and cleaning temperatures.	perating at more conservative values may Iranautics Technical Bulletins for more detail

Test Conditions

The stated performance is initial (data taken after 30 minutes of operation), based on the following conditions:

Notice: Permeate flow for individual elements may vary + or - 15 percent. Membrane active area may vary +/-4%. Element weight may vary. All membrane elements are supplied with a brins seal, interconnector, and o-rings. Elements are enclosed in a sealed polyethylene bag containing less than 1.0% sodium meta-bisuifts solution, and then packaged in a cardboard box.

Hydramautics believes the information and data contained herein to be accurate and useful. The information and data are offered in good faith, but without guarantee, as conditions and methods of use of our products are beyond our control. Hydramautics assumes no liability for results obtained or damages incurred through the application of the presented information and data. It is the user's responsibility to determine the appropriateness of Hydramautica' products for the user's specific end uses. 11/03/15

> Hydranautics Corporate: 401 Jones Road, Oceanside, CA 92058 1-800-CPA-PURE Phone: 760-901-2500 Fax: 760-901-2578 info@Hydranautics.com

SWC5-LD

High Performance, Low Fouling Seawater RO membranes for Desalination and Power Industry SWC5-LD from the LD Technology™ innovative low fouling membranes achieves superior salt and boron rejection to give a consistently pure end-product from a variety of feedwaters at low operating pressures

With the desalination industry poised to meet the world's fresh water demand, it has become critical to obtain fresh water in an environmentally friendly and economical manner.

At Hydranautics, we understand the needs of the desalination industry to maintain the highest purity of the produced water while optimizing flow and reducing the power consumption of the desalination system.

The SWC5-LD Seawater Reverse Osmosis membrane from Hydranautics combines the best of the seawater desalination technology with the cutting edge of the low fouling LD Technology[™]. The SWC5-LD gives you the highest flow rates, highest ion rejection and the lowest energy consumption combined with reduced biological and colloidal fouling. The SWC5-LD is the most suitable membrane for desalination applications for conventional as well as hybrid plants. When desalination is used for applications such as boiler feedwater for power plants and agricultural application, you can trust the SWC5-LD to give you the performance you need!

Applications:

- Boiler makeup water in power industry
- Conventional and hybrid desalination plants
- Boron reduction for agricultural application

Performance:

Permeate Flow	9,000 gpd (34.1 m*/d)
Salt Rejection	99.8 % (99.7 % minimum)
Boron Rejection (Typical):	92.0% ^T
A block on the start of the sta	a data and based and and data

Applications Data:

pH Range, Continuous (Cleaning)	2-11 (1-13)*
Maximum Feedwater SDI (15 min)	5.0
Maximum Feed Flow	75 GPM (17.0 m ³ /h)

 The antistoria shown mee are tor general use. For specific projects, operand at more conservative values may ensure the bare performance and longest till of the membrane. See Hydramatics Technical Bulletins for more detail on operation limits, clearing pH, and clearing temperatures.

Test Conditions:

The stated performance is initial (data taken after 30 minutes of operation), based on the following conditions 32,000 ppm NaCl

800 psi (5.5 MPa) Applied Pressure

77 F (25 C) Operating Temperature

- 10% Permeate Recovery
- 6.5 7.0 pH Range

Key benefits:

- High permeate flow -9,000 gpd (34.1 m³/d)
- High salt rejection -99.8% (99.7% minimum)
- 92% boron rejection
- Lowest biological and colloidal fouling
- Greater tolerance to high pH cleanings
- Lower energy consumption

Membrane Element

SWC6-LD (Low Fouling Technology)

Performance:	Permeate Flow: Salt Rejection: Boron Rejection (Typical) [†] : Applied Pressure:	Low Pressure: 6,000 gpd (22.7 m ³ /d) 99.6% (99.4 % min) 83.0% 600 psi (4.1 MPa)	High Flow: 12,000 gpd (45.5 m3/d) 99.8 % (99.7 % min) 91.0% 800 psi (5.4 MPa)
Туре	Configuration: Membrane Polymer: Membrane Active Area: Feed Spacer:	Spiral Wound Composite Polyamide 400 ft ² (37.2m ⁻²) 34 mil (0.864 mm) with bi	iostatic agent
Application Data*	Maximum Applied Pressure: Maximum Chlorine Concentration: Maximum Operating Temperature: pH Range, Continuous (Cleaning): Maximum Feedwater Turbidity: Maximum Feedwater SDI (15 mins): Maximum Feed Flow: Minimum Ratio of Concentrate to Permeate Flow for any Element: Maximum Pressure Drop for Each Element:	1200 psig (8.27 MPa) < 0.1 PPM 113 °F (45 °C) 2-11 (1-13)* 1.0 NTU 5.0 75 GPM (17.0 m ³ /h) 5:1 15 psi	
* The limitations shown	here are for general use. For specific projects	, operating at more consen	vative values may

* The limitations shown here are for general use. For specific projects, operating at more conservative values may ensure the best performance and longest life of the membrane. See Hydranautics Technical Bulletins for more detail on operation limits, cleaning pH, and cleaning temperatures.

Test Conditions

The stated performance is initial (data taken after 30 minutes of operation), based on the following low pressure conditions:

Notice: Permeate flow for individual elements may vary +25% or -15%. Membrane active area may vary +/-4%. Element weight may vary vary and a supplied with a brine seal, interconnector, and o-lings. Elements are enclosed in a sealed polyethylene bag containing less than 1.0% sodium meta-bisulfite solution, and then packaged in a cardboard box. "When tested are stranded box."

Hydranautics believes the information and data contained herein to be accurate and useful. The information and data are offered in good feith, but without guarantee, as conditions and methods of use of our products are beyond our control. Hydramautics assumes no liability for results obtained or damages incurred through the application of the presented information and data. It is the user's responsibility to determine the appropriatenees of Hydramautics products for the user's specific end uses. 308/151

LENNTECH

info@lenntech.com Tel. +31-152-610-900 www.lenntech.com Fax. +31-152-616-289

Seawater RO Elements T M 8 4 0 M/V						
Туре	Diameter Inch	Membrane Area ft ² (m ²)	Salt Rej %	ection	Product Flow Rate gpd(m ³ / d)	Feed Spacer Thickness mil
TM840M-1760	16°	1,760(164)	99.	8	30,800(117)	28
TM840V-1760	16°	1,760(164)	99.	8	39,600(150)	28
1. Membrane Type				Cross Li	nked Fully Aromatic Polyami	ide Composite
2. Test Conditions		Feed Water Pressure Feed Water Temperature Feed Water Concentration Recovery Rate Feed Water pH		800 p: 77° F 32,00 8% 7	si(5.52MPa) (25°C) 0 mg/l Nacl	
3. Minimum Salt Rejection		-		99.5%	5	
4. Minimum Product Flow F	lata			24 600	and/03m3/d) (TM840M	1760)

4. Minimum Product Flow Rate	24,600gpd(93m ³ /d) (TM840M-1760) 31,700gpd(120m ³ /d) (TM840V-1760)
5. Boron Rejection	95% at pH8 (TM840M-1760)
(typical value)	92% at pH8 (TM840V-1760)
	(5mg/I Boron added to Feed water)

Dimensions

Sea Water RO Elements					
Туре	Diameter Inch	Membrane Area ft ² (m ²)	Salt Rejection %	Product Flow Rate gpd(m ³ / d)	Feed Spacer Thickness mil
TM820C-370	8"	370(34)	99.75	6,000(22.7)	34/31
TM820C-400	8"	400(37)	99.75	6,500(24.6)	34/28

1. Membrane Type		Cross Linked Fully Aromatic Polyamide Composite
2. Test Conditions	Feed Water Pressure Feed Water Temperature Feed Water Concentration Recovery Rate	800 psi(5.52MPa) 77°F(25°C) 32,000 mg/l Nacl 8%
3. Minimum Salt Rejection		99.5%
4. Minimum Product Flow Rate		4,800gpd(18.2m ³ /d)(TM820C-370) 5,200gpd(19.7m ³ /d)(TM820C-400)
5. Boron Rejection (typical value)		93% at pH 8 (5mg/l Boron added to Feed water)

Dimensions

